
Sharing and Exploring Sensor Streams over Geocentric
Interfaces

Liqian Luo, Aman Kansal, Suman Nath, and Feng Zhao
Microsoft Research, One Microsoft Way, Redmond, WA 98052

{liqian, kansal, sumann, zhao}@microsoft.com

ABSTRACT
We present SenseWeb, an open and scalable infrastructure
for sharing and geocentric exploration of sensor data streams.
SenseWeb allows sensor owners to share data streams across
multiple applications and users, thus amortizing sensor de-
ployment costs effectively. It also provides mechanisms to
transparently index and cache data, to process spatio-temporal
queries on real-time and historic data, and to aggregate and
present results on a geocentric web interface. In this paper,
we present the architecture of SenseWeb, its techniques to
enable global sharing of heterogeneous sensors, and its map-
based front-end for spatio-temporal data exploration. We
enable interactive geocentric data exploration in the map-
based front-end using techniques for rapidly changing map
overlaid visualizations of numerous data streams. We also
demonstrate flexibility and scalability of the architecture by
evaluating a deployed prototype of SenseWeb, which has
been publicly available since March 2008.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems; C.2.4 [Computer Systems Organization]:
Computer Communication Networks—Distributed Systems

General Terms
Algorithms, performance, scalability, measurement

Keywords
Sensor networks, peer produced, geocentric interface

1. INTRODUCTION
We present SenseWeb, an open infrastructure for sharing

and geocentric exploration of sensor data streams. It incor-
porates diverse sensor networks, such as sensor motes, web-
cams, and weather stations, deployed by independent enti-
ties and enables applications to use them as a single larger

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’08, November 5-7, 2008. Irvine, CA, USA
Copyright 2008 ACM ISBN 978-1-60558-323-5/08/11 ...$5.00.

system with significantly enhanced capabilities than any of
the individual components. Its web-based front-end, called
SensorMap, enables users such as environmental scientists
to visualize the sensor data steams on an interactive map,
providing efficient data exploration for discovery of spatial
and temporal correlations among the streams.

The sharing approach, sometimes referred to as peer pro-
duction [7], has been found successful in various systems
such as the Wikipedia, Linux, or Web 2.0 applications where
multiple contributors each build a small component with
some individual utility, but the system as a whole has much
greater utility and enables a larger number of applications
than those supported by the individual components.

The current generation of sensor network deployments are
typically monolithic, concentrated in a single area, dedicated
to a single set of applications, and maintained by a single
team [19, 20]. While occasionally sharing their data, mono-
lithic deployments are not designed to make their resources
re-usable by other systems or concurrently used by multiple
entities. The peer production approach can provide several
unique advantages over these deployments in terms of pro-
viding larger spatio-temporal coverage, sharing resources op-
portunistically, and combining multiple sensing modalities.

In such a peer-produced, large-scale sensor-sharing sys-
tem, techniques for efficient data exploration are necessary
to help users to locate and identify particular sensor streams
of interest. Traditional information sharing systems, such as
the Internet, serve content that is human created, there-
fore directly indexable and searchable using keywords or
tags. However, sensor streams consist of numerical or binary
data automatically collected by sensors, which are therefore
harder to explore or search using text-based approaches.
The goal of sensor data exploration also differs from that
of Internet exploration. Unlike text based content, where
users wish to find individual relevant websites, users explor-
ing sensor data are not typically interested in finding a single
sensor stream but in finding an environmental phenomenon
observed by multiple sensors. Such environmental phenom-
ena are usually composed of multiple snapshot observations
across multiple senors dispersed in the space. In order to
facilitate the discovery of such spatio-temporal phenomena,
SenseWeb adopts a geocentric approach. Its data explo-
ration front-end, called SensorMap, presents sensor streams
visually on a map-based interface.

Using SensorMap, users can zoom in, zoom out or pan
the map to locate sensor streams in different geographical
regions. Users can also select any sensors of interest and
view their temporal distributions and correlations in time-

series charts. A third major feature of SensorMap is online
contour generation. A user can select any type of numerical
sensors and request for a contour map to view their spatial
distribution. As the user traverses to different geographical
regions using the map-based interface, contour maps of the
sensor streams in view are dynamically generated on the fly,
allowing the user to quickly explore their spatial correlations.

Large-scale sensor sharing and exploration imposes many
unique research challenges, of which we consider two in this
paper. First, embedded sensors are heterogeneous in terms
of resource capabilities, mobility, network connectivities, and
administrative boundaries. Such heterogeneity should be
hidden from sensing applications as much as possible by a
simple and homogeneous abstraction, to help them seam-
lessly take advantage of multiple relevant deployments. An
open and scalable architecture is preferred for flexible use
across multiple application domains.

Secondly, the system should serve temporal and spatial
visualization requests in real-time to enable interactive ex-
ploration of a large collection of evolving sensor data. Par-
ticularly, spatial visualizations based on contour maps re-
quire online interpolation of values at unobserved locations
as sensor readings are sparsely dispersed. Such interpolation
often incurs large computational cost, and therefore incurs
intolerable delays even for a small set of sensors. Addressing
these two requirements becomes extremely challenging when
the infrastructure must be scalable to a large collection of
sensors, be extensible to support new sensor types, and be
highly responsive to visualization requests.

By tackling the two challenges, the paper contributes in
the following ways:

• We provide an open and scalable back-end architec-
ture that enables sharing of heterogeneous sensors. It
proposes the use of remote sensor gateways to host
sensor data streams, thereby federating a distributed,
Internet-scale sensing system. Moreover, it provides
a tree-based type system, enabling customization of
sophisticated sensor types.

• We present techniques1 for interactive geocentric data
exploration in a map-based front-end. It provides snap-
shot, temporal, and spatial views of sensor streams,
overlaid on top of the map. For scalability, it caches
computationally expensive visualizations derived from
sensor data, and efficiently reuses the relevant portions
based on overlapping regions among queries. The pro-
posed techniques leverage the spatio-temporal local-
ities in data exploration to enable rapidly changing
spatial visualizations of numerous streams.

• We demonstrate the effectiveness of our techniques by
evaluating them with a prototype SenseWeb deploy-
ment. The techniques were applied to an existing pro-
totype in March 2008. We use a real-world workload
from Live Search Maps and other appropriate data to
illustrate the efficacy of our approach.

Our current prototype (available at http://atom.research.
microsoft.com/sensewebv3/sensormap) already incorporates
a large heterogeneous collection of sensors including wireless

1Our focus is to to efficiently apply existing spatial interpo-
lation methods in a distinct context rather than proposing
new ones.

motes, weather stations, traffic sensors, rain meters, and web
cameras. Several groups of environmental scientists from
different institutions including EPFL Switzerland, NTHU
Taiwan, and NTU Singapore, have been using the proto-
type system to share their sensor deployments. We report
our experience with this public deployment in Section 5.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the design challenges. Section 3 presents
the architectural design to enable sharing of heterogeneous
sensors. Section 4 describes the geocentric interface for data
exploration, focusing on the underlying algorithms to sup-
port scalable contour visualizations. Evaluations of our pro-
posed techniques as well as the deployed prototype are pre-
sented in Section 5. Section 6 summarizes related work and
Section 7 concludes the paper.

2. DESIGN CHALLENGES
SenseWeb aims to address the unique requirements and

constraints posed by its constituent sensors, data, and target
applications. This section summarizes the major challenges.

Heterogeneity: Unlike the sensors in monolithic systems,
components of a shared sensing infrastructure may be highly
heterogeneous along several dimensions:
Sensor Heterogeneity. The types of sensors may range from
wireless motes, mobile phones, network cameras, pollution
sensors, weather stations, to even RSS feeds. It is difficult
to exhaustively list the types of sensors at design time.
Data Heterogeneity. Sensor heterogeneity leads to variations
in the structure of data collected by sensors. It can be scalar,
image, video, or more complex structures. For instance, a
weather station sensor may generate both a binary image
and an array of scalar measurements such as temperature,
humidity, wind speed and direction.
Application Heterogeneity. Developers who wish to use a
shared sensing substrate in their applications may have dis-
tinct domain specific needs. They are usually interested in
different sensor types, geographical locations, and spatio-
temporal resolutions. Moreover, data processing methods
such as data cleaning, aggregation, and interpolation vary
across different applications.

Scalability: A shared system becomes more and more use-
ful as the number of participants grows, creating the commu-
nity effect. This introduces significant challenges for scala-
bility. As the number of sensors and applications grows, the
demand for resources increases. A näıve centralized solution
that collects and processes all the sensor data streams at a
single server will not be efficient. The scalability challenge
manifests itself in two key aspects.

First, the large data volume continuously generated by
shared sensors imposes challenges in data collection and
storage. Obviously, it is not efficient to transfer all the data
sets to a central storage system, which may then become
a bottleneck for communication and processing. Therefore,
mechanisms that distribute the tasks of data collection, stor-
age, and query processing are required.

Second, in typical applications, raw data streams traverse
through multiple layers of processing (e.g., data cleaning,
gap filling, aggregation and transformation). It is not scal-
able to exhaustively pre-compute the multiple layers due to
diverse application and user requirements. For example, an
environmental scientist may request per minute readings of
temperature for every square kilometer, while other users

http://atom.research.microsoft.com/sensewebv3/sensormap
http://atom.research.microsoft.com/sensewebv3/sensormap

may only be interested in hourly average for a certain zip
code. On the other hand, if data processing is always on de-
mand, end users may experience intolerable response delays.
Hence, a balance between pre-computation and on-demand
computation needs to be found to make the system scalable
but highly responsive.

In addition to heterogeneity and scalability, there are chal-
lenges in security, data verifiability, trust, data provenance,
and sharing incentives [4, 6, 15] that have not been touched
upon in this work.

3. GLOBAL SENSOR SHARING
This section focuses on the back-end infrastructure of Sense-

Web that enables contributors to share their sensor deploy-
ments, and application developers to access the shared sen-
sor data streams.

Dedicated sensor network deployments that are not shared
are typically monolithic, operate on uniform hardware plat-
forms, collect data via a common network stack, serve a fixed
set of applications, and are maintained by a single team.
After globally interconnecting and sharing such monolithic
deployments, the resulting system becomes extremely het-
erogeneous in both hardware and software. Exposing such
heterogeneity to application programmers complicates de-
velopment, and is therefore undesirable. On the other hand,
restricting the types of sensors and data to be shared is not
an appropriate solution either since it constrains the system
to a small subset of contributors. Therefore, the sharing sys-
tem should be designed such that (i) it provides contributors
the flexibility to share a wide spectrum of sensors, and (ii)
it exposes simple abstractions for developers to isolate the
complexity of heterogeneous sensors.

The SenseWeb system is designed to tackle the aforemen-
tioned challenges by providing an open and extensible ar-
chitecture that exposes uniform interfaces to access sensors
and their data streams. Conceptually, a sensor or sensor
network is shared by adding its description to the SenseWeb
index and applications can then discover such sensors based
on location, type, or other characteristics. Sensor data may
be accessed with specified time windows, into the past or
future, at available sampling rates. This section describes
the architectural design of the sharing system and discusses
the details of sensor management.

3.1 Architectural Design
Figure 1 depicts the architecture of SenseWeb, showing

the sensing substrate at the bottom, the sensing applications
at the top along with the various SenseWeb components that
interface these two entities. The various components expose
their functionality using web services interfaces that allows
applications developed on a variety of platforms to access
SenseWeb.

Coordinator: Central to the architecture is the Coordi-
nator, which serves as a common point of access for con-
tributors to share sensor data streams and for applications
to gain access to available data. It can be implemented in
a hierarchical manner across multiple machines distributed
across the Internet, although our current implementation
has a centralized Coordinator. We divide the functionali-
ties of the Coordinator into three components: Application
Manager, Sensor Manager and User Manager.

The user manager implements user authentication mech-
anism. Based on their identity, users are granted different

Coordinator

Application

Manager
Sensor

Manager

User

Manager

Sensor

Gateway: X

Sensor

Gateway: Y

Transformer: X Transformer: Y

Sensor Gateway:

DataHub

Application: X

Data Transformers

Coordinator

Sensor Gateways

Sensors

Applications
Application: Y

Transformer: Z

Figure 1: Architecture of the SenseWeb system

access privileges for different sensors. In-depth discussion
on this subject is out of scope of the paper.

The sensor manager serves as an indexing engine of the
shared sensors and their characteristics. It acts similar to
a DNS server on the Internet, converting user friendly sen-
sor descriptions such as location boundaries, logical names,
or sensor types to physical sensor identifiers. To efficiently
support spatial queries, the sensor manager indexes sensors
by using a hierarchical triangular mesh (HTM) indexing
scheme [18], which is particularly suitable for geographic
queries. Besides providing indexing service to upper layers,
it also provides APIs for sensor contributors to manipulate
both sensors and their types. More concretely, it allows cre-
ation of sensor types, addition of sensors to the index, as
well as modification of indexed sensors.

While the sensor manager takes care of sensor meta-data,
the Application Manager is responsible for sensor data man-
agement. It incorporates a novel indexing technique called
COLR-Tree [5] to optimize end-to-end latencies for real-time
queries on sensor data streams by exploring spatio-temporal
locality in query workloads.

Sensor Gateways: A sensor gateway interfaces sensors to
SenseWeb. It manages a subset of sensors connected to
SenseWeb. It accepts data collection tasks from the Co-
ordinator and responds with relevant data. Based on the
willingness of a contributor to share the physical deploy-
ment, sensor gateways can be categorized into two types:
physical and virtual.

Physical gateways expose sensor control interfaces to the
Coordinator. Sensors physically take samples upon the re-
ception of data collection tasks. The Coordinator is able
to track the quality, availability or capabilities of the corre-
sponding sensors and inject tasks to a subset that best satis-
fies application requirements. Virtual gateways, on the other
hand, add another layer of abstraction to isolate sensor-
specific data sampling and collection from the shared sys-
tem. They do not allow the Coordinator to control the sen-
sors. Instead, they automatically collect data samples into

a local cache or database, and respond to data collection re-
quests from stored data. The two types provides the Sense-
Web system opportunities to optimize data collection while
giving the contributors the freedom to keep their physical
sensors private.

We have implemented a default virtual gateway named
DataHub for contributors who do not host their own. For
contributors who wish to store data locally, they are able
to seamlessly integrate2 their local gateways into SenseWeb
by (i) implementing a set of predefined web service APIs,
and (ii) providing URLs of the web service while register-
ing sensors with SenseWeb. The Application Manager hides
the complexity of distributed data sources from application
developers by providing a unified query interface.

Data Transformers: The role of a transformer is to con-
vert data semantics through processing. For example, a
transformer may extract the people count from a video stream.
Additional examples of data transformers are unit conver-
sion, data fusion, and data visualization services. Domain
experts can implement various transformers for different sen-
sor data using suitable domain specific platforms.

The layered architecture of SenseWeb offers several bene-
fits. First, it enables efficient sharing of heterogeneous sen-
sors. SenseWeb abstracts away the heterogeneity of sensor
hardware platforms and the complexity of physical data col-
lection mechanisms. Applications can re-use existing sensor
deployments, thereby amortizing deployment cost efficiently.
Moreover, the spatio-temporal indexing and caching mecha-
nism minimizes communication cost by exploring potential
overlaps among applications.

Second, SenseWeb simplifies the process of application de-
velopment while ensuring flexibility. Application developers
can utilize data collection methods and relevant transform-
ers already present in the system, so that they can focus
their efforts on their specific applications. They can extend
the system as per their needs and also share results from
their development efforts as additional transformers.

Finally, by using distributed sensor gateways to serve sen-
sor data, the architecture is able to accommodate potentially
large number of sensors that continuously generate data.

3.2 Sensor Management
On stand-alone sensor systems, structures of sensor data

streams are usually known and rarely change. However, as a
platform for data sharing across sensor systems, SenseWeb
confronts challenges in sensor management to support an
unknown variety of sensors. An intuitive solution would be
to grant contributors the full freedom of defining any sen-
sor type. This results in enormous burdens on application
developers who have to later interpret the dynamic types.
Alternatively, a static type system which hard-codes a list of
supported sensor types is apparently too rigid for a shared
system. Therefore, we design a tree-based type system that
allows new types to be defined hierarchically based on a list
of known types.

Figure 2 illustrates the tree-based sensor type system.
SenseWeb maintains a predefined set of data types such as
scalar and binary. The system was created with only a set
of primary sensor types that were thought to be commonly
used, including thermometer, video camera, humidity sen-

2Tutorials and sample code are available online: http://
research.microsoft.com/nec/senseweb/

sor, etc. Each primary sensor is associated with a specific
data type, that enables application developers to correctly
interpret the corresponding data streams. As the sharing
system grows, new contributors may wish to add new types
of sensors, for example, rain meters. SenseWeb allows such
contributors to define new primary types and their associa-
tion with data types. A sensor does not necessarily generate
only one data sample at a time. More complex sensors such
as a weather station measure temperature, humidity, and
rain amount simultaneously. To support such sensors, the
type system supports compositional sensor types that are hi-
erarchically defined. A compositional sensor type is defined
as an array of existing sensor types, primary or composi-
tional.

1 2 3 4

5

9

6

7

8

10

a b c d

Data type

Compositional sensor type

Primary sensor type

Figure 2: Tree-based sensor type system

The tree-based type system lets the contributors enjoy
the freedom to construct any complex types. Meanwhile, it
retains programmability in type interpretation. Following
the type tree, any given type can be decomposed into an
ordered array of primary types by recursively unfolding its
child types. The primary types can be further mapped into
a list of known data types, which reveals the structure of
the corresponding sensor streams. A concrete example of
interpreting type 7 in Figure 2 is given below:

[7] 7→ [5, 5] 7→ [[1, 2, 2], [1, 2, 2]] 7→ [[a, c, c], [a, c, c]]

The deployed version of SenseWeb has been extended by
users to add new types such as weather stations and other
environmental sensors using the initially created types (de-
tails in Section 5.1).

4. SPATIO-TEMPORAL DATA EXPLO-
RATION

The SenseWeb infrastructure enables sharing of heteroge-
neous sensor streams. Users can issue queries to access both
real-time and historic data from geographic regions of inter-
est. To further simplify the data exploration process, we pro-
vide an interactive geocentric interface letting users graphi-
cally issue spatio-temporal queries for sensor data, and view
results (raw or sampled sensor data) directly over a map
that can be viewed, panned, and zoomed in a browser.

A user can specify the area of interest by drawing a poly-
gon directly on the browsable map, or by typing a descriptive
term (such as an address or city name) in the SensorMap
web interface. SensorMap automatically aggregates the re-
sults at an appropriate granularity based on the zoom level

http://research.microsoft.com/nec/senseweb/
http://research.microsoft.com/nec/senseweb/

of the map and generates appropriate visualizations for dis-
play.

A user can explore sensor data streams along both tem-
poral and spatial dimensions. Via the SensorMap interface,
a user can select a list of sensors of interest to visualize
their temporal distribution in a single comparison chart or
in multiple side-by-side time series charts. SensorMap also
generates map-overlaid contours of real-time or archive data
of selected sensors in view.

Below, we present the design of the SensorMap applica-
tion, focusing on scalable spatial data presentation tech-
niques that enable rapid changes to map-overlaid contours.

4.1 SensorMap Design

Data Transformers

Aggregator

Iconizer

TileGenorator

ContourGenerator

Kriging IDW

SenseWeb Backend (see Figure 1)

Figure 3: Architecture of the SensorMap application

Figure 3 shows the architecture of the SensorMap appli-
cation. Bottom of the architecture is the SenseWeb back-
end system. Above the back-end system there are multiple
reusable data transformers.

Given a desired spatial granularity, the Aggregator appro-
priately clusters and aggregates readings of a set of selected
sensors based on their distances along the Earth surface.
The Iconizer further converts such aggregate readings to
image icons, which are then displayed on top of a map at
corresponding locations by the SensorMap application. By
utilizing the two transformers, SensorMap can present snap-
shot readings of the sensors at an appropriate granularity
based on the current zoom level of the map.

To present the spatial distribution of a measured met-
ric such as humidity, another set of transformers are pro-
vided for generation and overlay of contour maps. User con-
tributed sensors usually lead to partial and irregular cover-
age. To generate contour maps, it is necessary to interpo-
late the values of a specific metric (e.g., the temperature)
at unobserved locations based on known sensor measure-
ments at nearby locations. We implement two alternative
spatial interpolation methods: Kriging [1] and Inverse Dis-
tance Weight (IDW) [17]. This is to give users the flexibility
to trade off between accuracy and latency (described in de-
tail in Section 4.2). Given a list of sensor measurements
at several random locations within a geographical region,

these interpolation transformers generate matrices of inter-
polated values that cover the whole region. The matrices are
then processed by the ContourGenerator to create contour
images. Finally, the TileGenerator converts the contour im-
ages into localized tiles that can be overlaid by SensorMap
on top of a browsable map.

IDW

Figure 4: Visualization of temporal distributions
and correlations

SensorMap visualizes temporal distributions of data in
time series charts based on AJAX and Flash techniques, as
shown in Figure 4. Both the time duration and resolution
are controllable. This greatly simplifies exploration and cor-
relation of temporal data. For instance, in the figure, users
can clearly see the interactions between ambient (red curve)
and surface (blue curve) temperatures.

The SenseWeb back-end allows users to query sensors and
their data streams. The additional transformers supplied
by SensorMap further enables users to query over aggregate
data, icons, and contour maps. Preliminary experiments
reveal that latency of icon queries ranges from sub-second
to a few seconds depending on the number of sensor data
streams in view. However, generation of contour visualiza-
tions is much more expensive, often taking more than 10
seconds for large datasets. Next, we focus on the techniques
enabling rapid generation and update of contour maps.

4.2 Scalable Spatial Data Presentation
To visualize spatial data using contour maps, SensorMap

provides two interpolation methods: Kriging and IDW, al-
lowing users to switch between the two methods to opt for
accuracy or latency. As early study shows [11], Kriging is
relatively more accurate and less affected by the coefficient of
variation. However, it is fairly computation-intensive since
it includes an expensive K ×K matrix inversion, especially
for large K (K is the number of sensor measurements within
the geographical region of interest). Consequently, large pro-
cessing latency is expected. Comparatively, IDW is faster
(though less accurate) since its computational cost is lower.

In the literature, several variations of Kriging [14, 13]
have been proposed to accelerate the interpolation process in
the context of scientific high-performance computing. How-
ever, this work considers a distinct application context, map-
based spatial data browsing. As a user zooms or pans the
map to navigate across spatially correlated regions, contour
maps of the regions in view are generated on the fly to en-
able real-time exploration of spatial distributions. Unlike

domain specific scientific analysis where accuracy is criti-
cal while latency is usually a secondary concern, SensorMap
based data exploration is meant for interactively discovering
interesting data and phenomena. Hence, we focus on the less
computation-intensive algorithm, IDW, and propose various
techniques to further reduce its computational cost, thereby
reducing response time.

Basic IDW: To generate a contour map for a specific re-
gion, the first step is to assign values to unknown locations
based on scattered set of known sensor measurements. Prior
work [17] suggests calculating the value of an unknown point
as a weighted average of the known values, using a function
of the distances between the unknown point and the known
ones as the weights. The proposed interpolating function to
estimate value Z at point x0 is as follows:

Ẑ(x0) =

Z(xi), if ∃i ∈ {1, 2, · · · ,K}, d(xi, x0) = 0
K∑
i=1

(d(xi, x0))−λZ(xi)

K∑
i=1

(d(xi, x0))−λ
, otherwise.

where K is the number of known points, xi is a known point,
d(xi, x0) is the distance between xi and x0, and λ is a pos-
itive number to control the impact of closer points. Larger
λ leads to higher influence from the closer points, there-
fore resulting in steep gradients between data points. The
complexity of IDW when interpolating a M × N region is
O(M ×N ×K).

Localized Interpolation: It is clear that the basic IDW is
not scalable with K, the number of known points or sensor
measurements. However, when users of SensorMap zoom
out to a large region, it is likely that hundreds or thousands
of sensors come into view, leading to long delays in IDW-
based interpolation. In IDW, one important observation is
that the points further away from the interpolated point
contribute less to the interpolated value. Hence, considering
only sensors that are close to the interpolated point should
not cause a large degrading in accuracy, which motivates a
localized variation of IDW.

R 2R

R

x0

Figure 5: Localized interpolation of x0 based on sen-
sors within R, 2R, · · ·

Figure 5 depicts the localized interpolation of an unknown
point x0 based on nearby sensors. Only the set of sensors
whose distances to x0 is within R (called effective range) are

considered when calculating Ẑ(x0) while others are ignored.
However, it is common that user contributed sensors are not
uniformly distributed. To account for sparse regions with
few sensors or no sensors, a threshold Kmin is defined such

that for each unknown point, the algorithm keeps expanding
its effective range from R to 2R, 3R, · · · until at least Kmin

sensors are found.

Griding and Sampling: The localized version of IDW
still requires traversing through all the K sensors to find
closer ones to an interpolated point. We further optimize the
algorithm by preprocessing the set of sensors and clustering
them into a grid of dM/Re × dN/Re squares with width
R as shown in Figure 5. Each square maps to a list of
sensors within the square. The preprocessing occurs only
once during the interpolation process. To find sensors within
distance R from a certain point x0, we only need to traverse
sensors within the same square as x0 and its neighboring
squares. The overall complexity thereby becomes3

O(K +M ×N × (9R2D + πR2D)) = O(K +MNR2D)

where D is the density of sensors. This algorithm is signifi-
cantly more scalable with K compared to the original IDW.

To further reduce response time, we provides the option
to compute approximate contours using only a subset of all
available sensors within the query region. Users can define
a sample cap Kmax. When the total number of sensors in
view exceeds Kmax, a sampling algorithm randomly selects
Kmax sensors as inputs to the interpolation algorithm. Sam-
pling essentially sets an upper-bound for K and D, therefore
further enhancing scalability.

4.3 Multi-Resolution Caching
Due to the presence of spatio-temporal locality in query

workloads, caching allows SensorMap to re-use already com-
puted contour maps, avoiding redundant contour computa-
tion and data collection, and to deal with temporarily dis-
connected sensors. The basic idea of caching is simple: (i)
store into local cache recently computed contour matrices
containing sensor data and interpolated values, and (ii) for
the contour matrix of a new query, use values from cached
matrices as much as possible. The localized interpolation
of our IDW algorithm enables us to easily reuse parts of
disjoint cached matrices in a new matrix, without further
processing them.

The following two factors make caching and reusing con-
tour matrices in SensorMap challenging.

1. Most queries only partially overlap in space with each
other, requiring parts of different overlapped matrices
from the cache to be cropped and combined to answer
new queries. With a large number of matrices in the
cache, detecting overlapping matrices and combining
them efficiently is challenging.

2. Different queries are made with different zoom levels
and over regions of different sizes—at a higher zoom
level, the same viewport includes a smaller physical re-
gion than that at a lower zoom level. Therefore, even
though different cached matrices represent viewports
of the same size, they in fact represent physical regions
of different sizes. Such multi-resolution matrices fur-
ther complicate the process of identifying, cropping,
and combining overlapped matrices.

In summary, coordinates of physical regions represented
by different cached matrices must be translated and scaled
3Special processing for sparse regions is ignored for simplic-
ity.

with respect to each other and this must be taken into ac-
count during cache lookup.

Scaling and Translation: To support caching and efficient
reuse of matrices, which might be arbitrarily translated and
scaled with respect to one another, we use an imaginary ref-
erence matrix M. The dimension of M is the same as that
of the entire physical region (i.e., the entire surface of the
Earth) at the maximum zoom level. Before comparing ma-
trices, they are normalized by projecting to M, as Figure 6
depicts.

.

.

.

.

.

.

.

.

.

.

Values copied from cache

VA VB MBMA

?

?

?

?

?

?

? ?

VC

?

?

?

?

?

?

? ?

MC

M

? Values to be interpolated

. Unknown values

Cached values

M1

M2

M3

Figure 6: Interpolation of region VC based on cached
regions VA and VB

Suppose the current viewport V , and hence the matrix
M representing contours in V , is of dimension m × n. If
the current viewport is at the maximum zoom level such
as VA, it covers an m × n region of M, and hence there
exists a one-to-one mapping between MA to a submatrix
M1 of size m × n in M. If the current viewport is at a
lower zoom level such as VB , it shows a k1m × k2n region
of the entire physical region, where k1 and k2 are scaling
factors of the zoom level. Hence, VB and MB project to
a submatrix M2 of size k1m × k2n in M. Since M2 is
larger than MB , elements of MB map uniformly sparsely in
M2; more precisely, one of every k1 × k2 elements of M2 is
mapped by one element of MB .

Conceptually, one can model the entire cache with theM.
Before caching a contour matrix M computed for the current
viewport V , V is first projected toM, and the projected el-
ements of M are then populated by the elements of M . To
lookup cache for a viewport, say VC , it is first projected to
a submatrix M3 of M. After the elements of M3 are re-
trieved from the cache, M3 is then projected back to MC

corresponding to VC . Some elements for MC may not be
available in cache, and they need to be computed to com-
plete M . The computed elements can again be projected
back and cached in M.

The matrixM is very sparse and we do not need to main-
tain the entire matrix in cache. Rather, we cache only the
contour matrices, which in effect contain the nonempty ele-
ments of M. During cache lookup, each matrix is dynam-
ically projected to M to determine if it overlaps with the
query region, which has also been projected to M. The
entire process is shown in Figure 6, where parts of cached
matrices MA and MB are used in the matrix for MC . First,
the three regions VA, VB , and VC are converted to use the
maximum zoom level to find out their overlaps inM. Next,
the cached values within overlapped regions are copied from
MA and MB to MC . Note that a 2× 3 submatrix of MA is

copied to a 1× 2 submatrix of MC , since VC covers a 2× 2
bigger region than VA. Similarly, a 2×3 submatrix of MB is
directly copied to a 2× 3 submatrix of MC , as both VB and
VC use the same zoom level and hence represent physical
regions of the same size. Finally, localized IDW is applied
to calculate the remaining unknown values of region VC .

Cache Lookup: During cache lookup, we need to find all
cached matrices that overlap with the query region. One
way of doing that is to maintain all cached matrices in an
in-memory list, and to scan them sequentially while com-
paring with the query region. Since the list is maintained in
memory, the performance of such scan might be acceptable
to many applications. If the number of matrices is too big to
cache in memory, only metadata (translation and scale with
respect to M) of each matrix is maintained in memory and
actual matrices can be stored as separate files in disk. The
metadata lookup can be made faster by organizing them as
a tree structure; for example, the bounding boxes of cached
matrices can be organized as an R-Tree, which can iden-
tify matrices overlapping with a query region in logarithmic
time.

Expiring Cache: SensorMap removes cached matrices af-
ter a configurable expiry time. Each contour matrix is times-
tamped and put in one end of a circular buffer; while ex-
pired matrices are removed from the other end of the cir-
cular buffer. If the matrices are stored as files on disk, files
corresponding to expired matrices are deleted too.

5. EVALUATION
In this section, we present empirical results collected based

on a prototype system. The techniques discussed in the
paper were deployed in March 2008.

Both the default sensor gateway (DataHub) and the Co-
ordinator were implemented using C# with Microsoft SQL
Server 2005 used as the back-end for sensor indexing and
data storage. Applications (including SensorMap) access the
Coordinator using web service interfaces. We prototyped
most of the transformers in C#, except for the TileGenera-
tor, which uses a binary tool MapCruncher [2] for localizing
the contour images with respect to the map. The Sensor-
Map front-end is written in ASP.NET and JavaScript. It ac-
cesses transformers and back-end services via their web ser-
vice interfaces. Interpolation algorithms implemented in the
transformers are Ordinary Kriging and the localized IDW
described in Section 4.2. In the rest of the section, we use
Kriging to refer to Ordinary Kriging and IDW to refer to
the localized IDW unless otherwise stated.

Below, we first analyze the end-to-end performance of
SenseWeb based on the real sensors shared on the deployed
prototype. Next, we investigate the performance of different
contouring techniques using two large datasets.

5.1 System Performance
The deployed prototype system was initialized with sev-

eral predefined sensor types, including 9 primary types and
one compositional type. Currently, the system contains l52
primary types, 9 compositional types, and over 3,000 sen-
sors, which are created by contributors as needed. It is ev-
ident that users of SenseWeb have enjoyed the flexibility of
defining and registering heterogeneous sensors.

We first analyze the performance of sensor and data queries
using a set of popular sites, including temperature, traffic,

#types #primary sensors #compositional sensors Sensor gateway
Singapore 1 18 0 DataHub

Wannengrat, Switzerland 27 81 7 GSN [16]
Seattle, USA 5 102 0 DataHub

Taiwan 9 91 26 DataHub
Le Génépi, Switzerland 10 144 16 DataHub

Table 1: Characteristics of different sites

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Singapore

Wannengrat

Seattle
Taiwan

Le Génépi

Re
sp

on
se

 ti
m

e
(s

)

Data query
Sensor query

Figure 7: Response time of sensor and data queries

and camera sensors in Seattle, weather stations in Le Génépi
(Switzerland), weather towers in Wannengrat (Switzerland),
camera and rain sensors in Taiwan, and weather stations in
Singapore. The sensor type categorizations and gateways of
the sites are listed in Table 1. Note that the weather towers
in Wannengrat are hosted by a user supplied gateway, called
GSN [16], instead of DataHub.

For each of the sites, we issued multiple queries to request
the list of sensors as well as their most recent readings. Fig-
ure 7 depicts the response time of sensor meta-data and data
queries for the five sites. As is seen, the time it takes to get
the list of sensors within a site is almost constant. Compar-
atively, data query latency is proportional to the number
of primary sensors. The underlying reason is that sensor
readings are indexed by sensors, which determines query-
ing the most recent reading always incurs certain amount
of per-sensor cost (depending on the number of readings in
record for a specific sensor). We did not observe longer de-
lays for the Wannengrat site hosted by a remote gateway,
since the amount of data transferred over the Internet is rel-
atively small and the bandwidth between our server and the
remote site is sufficient.

Next, we study the end-to-end performance of the system
including sensor query and data fetching as well as contour
generation. The experiments are based on the Le Génépi
site which consists of 16 weather stations deployed on top
of a rocky glacier in the SwissEx project [3]. Each sensor
sampled once every 2 minutes from August 2007 to October
2007, resulting in approximately 40,000 samples per sensor
stored in DataHub.

In the experiment, we repeatedly submitted 100 queries to
get contour maps of the average surface temperature read-
ings during the hour starting from 6PM of October 23, 2007.
Based on the experiment, the end-to-end response time (in-
cluding data query delay and IDW-based contouring delay)
is 2.1s on average with little variation, out of which data
query takes up to 0.8s. Note that during this experiment
we disabled caching in all the transformers and the Coor-

Kriging IDW

Figure 8: Comparison of contour maps generated by
Kriging and IDW

dinator. We observed similar distribution and end-to-end
latency for Kriging-based contouring. Such observation is
consistent with microbenchmark results in the next section,
which shows that IDW and Kriging incurs similar latency
for small number of sensors, say 16.

The resulting contour maps (overlaid on terrain maps) of
Kriging and IDW are shown in Figure 8. They are visually
similar, which indicates that the outcome of IDW is still
acceptable though less smooth compared with Kriging.

5.2 Contouring Performance
This section presents evaluation results of the different

contouring techniques presented in Section 4. We used re-
sponse time as a major metric, which includes both the time
to interpolate unknown values as well as the time to gener-
ate contour maps as bitmap files. The dimensions of the
interpolated value matrices are set to be 256×256. We used
the following two datasets:

Synthetic Data: To isolate the impact of non-uniform dis-
tribution of sensors, we use synthesized sensor data as inputs
to the interpolation algorithms. Sensor density is the ma-
jor factor that affects the performance of the adapted IDW.
Therefore, in this dataset we synthetically created 65,535
sensors that are evenly distributed in the space to ensure a
fair comparison. The virtual map containing the synthetic
senors has 7 zoom levels.

YellowPage Queries: This dataset is a real workload from
Live Search Maps, consisting of 10,493 queries, each charac-
terized by a geographical region over which the query was
posed, searching over approximately 370,000 restaurants in
the US. The data serves as a proxy for the geographical re-
gions that may be queried by users of SensorMap. Consider
for instance the searches over restaurants as representing
a workload for a hypothetical restaurant wait time finding
service where each sensor publishes real-time wait time from
the restaurant.

5.2.1 Synthetic Data

 0

 20

 40

 60

 80

 100

 120

 140

 160

16 64 256 1024 4096 16384 65536

Re
sp

on
se

 ti
m

e
(s

)

Number of sensors

Kriging
IDW

Figure 9: Comparison of Kriging and IDW with in-
creasing number of sensors in view

 0

 2

 4

 6

 8

 10

4 8 16 32 64 128 256

Re
sp

on
se

 ti
m

e
(s

)

Pan distance (pixel)

Kriging
IDW

IDW+cache

Figure 10: Comparison of Kriging, IDW and IDW
with cache during panning

In this set of microbenchmarks, we compared the response
time of Kriging and various adaptations of IDW.

Figure 9 shows the response time of Kriging and IDW as
the view size is increased and more and more sensors come
into view. As is seen, IDW is more scalable with the number
of sensors. The latency of Kriging jumps to 150s for 1024
sensors, which is obviously intolerable in an interactive web-
browsing application.

Figure 10 depicts the effect of caching as the user pans the
map to view a slightly different region. The X axis shows
the distance in terms of pixels the user panned in one step
while the Y axis shows the response time. IDW with cache
has significantly lower latency when the overlap fraction is
high (small pan distances).

Figure 11(a) illustrates the impact of caching for IDW dur-
ing zooming out. Caching reduces response time as when a
user zooms out to a relatively coarse resolution, the previ-
ous region in view is a subset of the current one and the
cached values are copied into the new value matrix, leading
to saving in computation. Similarly, when the user zooms
in to a finer resolution (Figure 11(b)), part of the cached
values can again be reused to reduce latency.

5.2.2 YellowPage Queries
Finally, we used the real workload from Live Search Maps

since it provides a realistic distribution of geographical re-
gions in user queries and their overlap fractions.

We first investigates the impact of caching durations (i.e.,
the duration after which a cached matrix is expired). Fig-
ure 12 depicts the histogram of response time for the scenar-
ios without cache, with 1 minute cache, and with 5 minute

 0

 0.5

 1

 1.5

 2

 2.5

 3

16 64 256 1024 4096 16384 65536

Re
sp

on
se

 ti
m

e
(s

)

Number of sensors

IDW
IDW+cache

(a) Zoom out

 0

 0.5

 1

 1.5

 2

 2.5

 3

65536 16384 4096 1024 256 64 16

Re
sp

on
se

 ti
m

e
(s

)

Number of sensors

IDW
IDW+cache

(b) Zoom in (the number of sensors in view
decreases when zooming in)

Figure 11: Comparison of IDW and IDW with cache
during zooming in and zooming out

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.25 0.5 0.75 1 1.25 1.5

Fr
eq

ue
nc

y

Response time (s)

5 minute cache
1 minute cache

No cache
1 minute cache
5 minute cache

Figure 12: Effects of varying caching durations

cache. It shows on Y axis the number of queries falling into
each time interval of length 0.01s. With a longer cache du-
ration, we observe smaller response time as expected. This
performance gain is achieved by sacrificing data freshness.

Next, we study the impact of sampling: randomly drop-
ping available sensors beyond a sample cap size. Figure 13
depicts the average response time of the whole query set
with varying cap size and caching durations: the response
time is shorter for smaller sample caps and longer cache du-
rations. Even a relatively large cap size of 1000 sensors leads
to 50% performance gain in response time. This is due to
the long-tail distribution of number of sensors per query:
users occasionally zoom out to the state level and even the
nation level asking for all the restaurants in view.

6. RELATED WORK
Several systems have been proposed for wide area sensing.

IrisNet [9] provided a database abstraction to query sensor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

100 200 300 400 500 600 700 800 900 1000infinite

Re
sp

on
se

 ti
m

e
(s

)

Sample cap

No cache
1 minute cache
5 minute cache

10 minute cache
30 minute cache
60 minute cache

Figure 13: Effects of varying sample caps and
caching durations

data distributed across multiple Internet-connected nodes.
SenseWeb introduces several new capabilities, including the
ability to host data externally rather than within the in-
frastructure, and support for heterogeneous devices. Other
systems [10, 12, 15, 8] have also proposed the use of sensors
contributed by multiple entities and many of their contribu-
tions can help improve SenseWeb design. We address several
issues not previously considered, including specific support
for sensor heterogeneity, and spatio-temporal data explo-
ration; these contributions are beneficial for all the above
projects.

While an open system for peer production is not currently
available for sensor networks, several such systems have been
successfully realized for other content including blogs, im-
age or video (Flickr.com, Myspace.com). Sharing special-
ized sensor data is already supported in systems such as
WeatherUnderground.com for weather data, EarthCam.com

for webcams, and SensorBase.org for generic sensor data.
SenseWeb extends such initial attempts to realize a system
that allows developing sensing applications over shared re-
sources, supporting multiple sensor types, and introducing
design improvements for efficient and scalable exploration of
the shared data.

The introduction of “Web 2.0” has enabled many interest-
ing mashup applications, especially on maps, listed at pro-

grammableweb.com. While such mashups are not designed to
achieve our vision of sharing sensing resources across mul-
tiple applications, their popularity motivates our data ex-
ploration front-end, SensorMap. The availability of map
mashup tools like MapCruncher [2] further enables Sensor-
Map to dynamically overlay spatial visualizations over ter-
rain maps.

7. CONCLUSIONS
We presented a shared sensing system, SenseWeb, that en-

ables sharing of sensor deployments at a global scale. We de-
scribed the system architecture that addresses the challenges
of heterogeneity and scalability in such a large scale sys-
tem. A first application of SenseWeb is an interactive spatio-
temporal sensor data exploration front-end, named Sensor-
Map. We discussed the challenges in designing resource ef-
ficient and highly responsive geocentric data visualization
in SensorMap and described our approaches. Through ef-
fective choices in computational methods, efficient re-use of
visualizations across multiple user queries, and selective data
caching, we showed that response times suitable for interac-
tive human user data exploration could be achieved. The

trade-offs relating various design choices were evaluated on
real world data sets. A deployed version of our system that
is already in use by several scientific and academic sensor de-
ployments in different continents was also illustrated. The
techniques proposed in this paper are likely to be beneficial
for geocentric data exploration where a large number of data
resources are accessed and spatio-temporal visualizations are
required in near real time for interactive use.

Next we plan to further extend the work in several di-
rections, including: (i) efficient querying and presentation
of non-numerical data types such as images or videos, and
(ii) indexing and visualization techniques for mobile sensors
with dynamically changing geographical locations.

8. REFERENCES
[1] Kriging. http://en.wikipedia.org/wiki/Kriging.

[2] Msr mapcruncher. http://research.microsoft.com/mapcruncher.

[3] Swiss experiment: Interdisciplinary environmental research.
http://www.swiss-experiment.ch.

[4] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin,
L. Guibas, A. Kansal, S. Madden, and J. Reich. Mobiscopes for
human spaces. IEEE Pervasive Computing, 6(2):20–29, 2007.

[5] Y. Ahmad and S. Nath. Colr-tree: Communication-efficient
spatio-temporal indexing for a sensor data web portal. In
ICDE, April 2008.

[6] M. Balazinska, A. Deshpande, M. J. Franklin, P. B. Gibbons,
J. Gray, M. Hansen, M. Liebhold, S. Nath, A. Szalay, and
V. Tao. Data management in the worldwide sensor web. IEEE
Pervasive Computing, 6(2):30–40, 2007.

[7] Y. Benkler. Coase’s penguin, or, linux and the nature of the
firm. Yale Law Journal, 112, 2002.

[8] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,
S. Reddy, and M. B. Srivastava. Participatory sensing. In
WSW, October 2006.

[9] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan.
Cache-and-query for wide area sensor databases. In ACM
SIGMOD, 2003.

[10] S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, G.-S.
Ahn, and A. T. Campbell. Metrosense project: People-centric
sensing at scale. In WSW, October 2006.

[11] C. A. Gotway, R. B. Ferguson, G. W. Hergert, and T. A.
Peterson. Comparison of kriging and inverse-distance methods
for mapping soil parameters. In Soil Sci Soc Am J
60:1237-1247 (1996).

[12] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko, A. Miu,
E. Shih, Y. Zhang, H. Balakrishnan, and S. Madden. CarTel: A
distributed mobile sensor computing system. In ACM SenSys,
2006.

[13] K. E. Kerry and K. A. Hawick. Kriging interpolation on
high-performance computers. In HPCN Europe 1998, pages
429–438, London, UK, 1998. Springer-Verlag.

[14] D. C. Mason, M. O’Conaill, and I. McKendrick. Variable
resolution block kriging using a hierarchical spatial data
structure. In International Journal of Geographical
Information Science, Volume 8, Issue 5, pages 429–449, 1994.

[15] O. Riva and C. Borcea. The urbanet revolution: Sensor power
to the people! IEEE Pervasive Computing, 6(2):41–49,
Apr-Jun 2007.

[16] A. Salehi and K. Aberer. Gsn, quick and simple sensor network
deployment. In EWSN, 2007.

[17] D. Shepard. A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the 1968 23rd ACM
national conference, pages 517–524, New York, NY, USA,
1968. ACM.

[18] A. Szalay, J. Gray, G. Fekete, P. Kunszt, P. Kukol, and
A. Thakar. Indexing the sphere with the hierarchical triangular
mesh. In MSR-TR-2005-123, September 2005.

[19] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu,
P. Buonadonna, S. Burgess, D. Gay, W. Hong, T. Dawson, and
D. Culler. A macroscope in the redwoods. In ACM SenSys,
2005.

[20] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In OSDI, 2006.

http://www.wunderground.com/
http://www.earthcam.com
http://sensorbase.org/
http://www.programmableweb.com
http://www.programmableweb.com

	Introduction
	Design Challenges
	Global Sensor Sharing
	Architectural Design
	Sensor Management

	Spatio-Temporal Data Explo-ration
	SensorMap Design
	Scalable Spatial Data Presentation
	Multi-Resolution Caching

	Evaluation
	System Performance
	Contouring Performance
	Synthetic Data
	YellowPage Queries

	Related Work
	Conclusions
	References

