
Rethinking Database Algorithms for
Phase Change Memory

Shimin Chen
Intel Labs Pittsburgh

shimin.chen@intel.com

Phillip B. Gibbons
Intel Labs Pittsburgh

phillip.b.gibbons@intel.com

Suman Nath
Microsoft Research

sumann@microsoft.com

ABSTRACT

Phase change memory (PCM) is an emerging memory tech-
nology with many attractive features: it is non-volatile,
byte-addressable, 2–4X denser than DRAM, and orders of
magnitude better than NAND Flash in read latency, write
latency, and write endurance. In the near future, PCM
is expected to become a common component of the mem-
ory/storage hierarchy for a wide range of computer systems.
In this paper, we describe the unique characteristics of PCM,
and their potential impact on database system design. In
particular, we present analytic metrics for PCM endurance,
energy, and latency, and illustrate that current approaches
for common database algorithms such as B+-trees and Hash
Joins are suboptimal for PCM. We present improved algo-
rithms that reduce both execution time and energy on PCM
while increasing write endurance.

1. INTRODUCTION
Phase change memory (PCM) [3, 10] is an emerging non-

volatile memory technology with many attractive features.
Compared to NAND Flash, PCM provides orders of mag-
nitude better read latency, write latency and endurance,1

and consumes significantly less read/write energy and idle
power [9, 10]. It is byte-addressable, like DRAM mem-
ory, but consumes orders of magnitude less idle power than
DRAM. PCM offers a significant density advantage over
DRAM, which means more memory capacity for the same
chip area and also implies that PCM is likely to be cheaper
than DRAM when produced in mass market quantities [22].
While the first wave of PCM products target mobile hand-
sets [24], in the near future PCM is expected to become
a common component of the memory/storage hierarchy for
laptops, PCs, and servers [9, 15, 22].

An important question, then, is how should database sys-
tems be modified to best take advantage of this emerging

1(Write) endurance is the maximum number of writes for each
memory cell.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro
vided that you attribute the original work to the author(s) and CIDR 2011.

5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 912, 2011, Asilomar, California, USA.

trend towards PCM? While there are several different pro-
posals for how PCM will fit within the memory hierarchy [10]
(as SATA/PCIe based data storage or DDR3/QPI based
memory), recent computer architecture and systems studies
all propose to incorporate PCM as the bulk of the system’s
main memory [9, 15, 22]. Thus, in the PCM-DB project [19],
we are focusing on the use of PCM as the primary main
memory for a database system. This paper highlights our
initial findings and makes the following three contributions.

First, we describe the unique characteristics of PCM and
its proposed use as the primary main memory (Section 2).
Several attractive properties of PCM make it a natural can-
didate to replace or compliment battery-backed reliable mem-
ory for general database systems [18], and DRAM in main
memory database systems [11]. However, a unique chal-
lenge arises in effectively using PCM: Compared to its read
operations, PCM writes incur higher energy consumption,
higher latency, lower bandwidth, and limited endurance.
Therefore, we identify reducing PCM writes as an impor-
tant design goal of PCM-friendly algorithms. Note that this
is different from the goals of flash-friendly algorithms [2,
17], which include reducing the number of erases and ran-
dom writes at much coarser granularity (e.g., 256KB erase
blocks and 4KB flash pages).

Second, we present analytic metrics for PCM endurance,
energy, and latency. While we believe that PCM may have
a broad impact on database systems in general, this pa-
per focuses on its impact on core database algorithms. In
particular, we use these metrics to design PCM-friendly al-
gorithms for two core database techniques, B+-tree index
and hash joins (Section 3). In a nutshell, these algorithms
re-organize data structures and trade off an increase in PCM
reads for reducing PCM writes, thereby achieving an overall
improvement in all three metrics.

Third, we show experimentally, via a cycle-accurate X86-
64 simulator enhanced with PCM support, that our new al-
gorithms significantly outperform prior algorithms in terms
of time, energy and endurance (Section 4), supporting our
analytical results. Moreover, sensitivity analysis shows that
the results hold for a wide range of PCM parameters.

The paper concludes by discussing related work (Section 5)
and highlighting a few of the many interesting open research
questions regarding the impact of PCM main memory on
database systems (Section 6).

2. PHASE CHANGE MEMORY
In this section, we discuss PCM technology, its properties

relative to other memory technologies, its proposed use as

Table 1: Comparison of memory technologies.
DRAM PCM NAND Flash HDD

Read energy 0.8 J/GB 1 J/GB 1.5 J/GB [28] 65 J/GB
Write energy 1.2 J/GB 6 J/GB 17.5 J/GB [28] 65 J/GB
Idle power ∼100 mW/GB ∼1 mW/GB 1–10 mW/GB ∼10 W/TB
Endurance ∞ 106 − 108 104 − 105 ∞
Page size 64B 64B 4KB 512B
Page read latency 20-50ns ∼ 50ns ∼ 25 µs ∼ 5 ms
Page write latency 20-50ns ∼ 1 µs ∼ 500 µs ∼ 5 ms
Write bandwidth ∼GB/s per die 50-100 MB/s per die 5-40 MB/s per die ∼200MB/s per drive
Erase latency N/A N/A ∼ 2 ms N/A
Density 1× 2 − 4× 4× N/A
Note: The table contents are based mainly on [10, 15, 22].

"RESET" pulse

"SET" pulse

READ

Time

(T
e

m
p

e
ra

tu
re

)
C

u
rr

e
n

t

cryst

melt

T

T

Figure 1: Currents and timings (not to scale) for
SET, RESET, and READ operations on a PCM cell.
For phase change material Ge2Sb2Te5, Tmelt ≈ 610◦C
and Tcryst ≈ 350◦C.

the primary main memory, and the key challenge of over-
coming its write limitations.

2.1 PCM Technology
Phase change memory (PCM) is a byte-addressable non-

volatile memory that exploits large resistance contrast be-
tween amorphous and crystalline states in so-called phase
change materials such as chalcogenide glass. The difference
in resistance between the high-resistance amorphous state
and the low-resistance crystalline state is typically about
five orders of magnitude and can be used to infer logical
states of binary data (high represents 0, low represents 1).

Programming a PCM device involves application of elec-
tric current, leading to temperature changes that either SET
or RESET the cell, as shown schematically in Figure 1. To
SET a PCM cell to its low-resistance state, an electrical
pulse is applied to heat the cell above the crystalization tem-
perature Tcryst (but below the melting temperature Tmelt) of
the phase change material. The pulse is sustained for a suffi-
ciently long period for the cell to transition to the crystalline
state. On the other hand, to RESET the cell to its high-
resistance amorphous state, a much larger electrical current
is applied in order to increase the temperature above Tmelt.
After the cell has melted, the pulse is abruptly cut off, caus-
ing the melted material to quench into the amorphous state.
To READ the current state of a cell, a small current that
does not perturb the cell state is applied to measure the
resistance. At normal temperatures (< 120◦C ≪ Tcryst),
PCM offers many years of data retention.

2.2 Using PCM in the Memory Hierarchy
To see where PCM may fit in the memory hierarchy, we

need to know its properties. Table 1 compares PCM with
DRAM (technology for today’s main memory), NAND flash

SSD/HARD DISK

M
E

M
O

R
Y

M
A

IN

CACHE

PCM

CPU
(a)

CACHE

SSD/HARD DISK

CPU

DRAM PCM

(b)

CACHE

SSD/HARD DISK

DRAM CACHE

CPU

PCM

(c)

Figure 2: Candidate main memory organizations
with PCM.

(technology for today’s solid state drives), and HDD (hard
disk drives), showing the following points:

• Compared to DRAM, PCM’s read latency is close to
that of DRAM, while its write latency is about an
order of magnitude slower. PCM offers a density ad-
vantage over DRAM. This means more memory capac-
ity for the same chip area, or potentially lower price
per capacity. PCM is also more energy-efficient than
DRAM in idle mode.

• Compared to NAND Flash, PCM can be programmed
in place regardless of the initial cell states (i.e., with-
out Flash’s expensive “erase” operation). Therefore,
its sequential and random accesses show similar (far
superior) performance. Moreover, PCM has orders of
magnitude higher write endurance than Flash.

Because of these attractive properties, PCM is being incor-
porated in mobile handsets [24], and recent computer ar-
chitecture and systems studies have argued that PCM is a
promising candidate to be used in main memory in future
mainstream computer systems [9, 15, 22].

Figure 2 shows three alternative proposals in recent stud-
ies for using PCM in the main memory system [9, 15, 22].
Proposal (a) replaces DRAM with PCM to achieve larger
main memory capacity. Even though PCM is slower than
DRAM, clever optimizations have been shown to reduce ap-
plication execution time on PCM to within a factor of 1.2
of that on DRAM [15]. Both proposals (b) and (c) include
a small amount of DRAM in addition to PCM so that fre-
quently accessed data can be kept in the DRAM buffer to
improve performance and reduce PCM wear. Their differ-
ence is that proposal (b) gives software explicit control of the
DRAM buffer [9], while proposal (c) manages the DRAM

buffer as another level of transparent hardware cache [22].
It has been shown that a relatively small DRAM buffer (3%
size of the PCM storage) can bridge most of the latency gap
between DRAM and PCM [22].

2.3 Challenge: Writes to PCM Main Memory
One major challenge in effectively using PCM is overcom-

ing the relative limitations of its write operations. Com-
pared to its read operations, PCM writes incur higher energy
consumption, higher latency, lower bandwidth, and limited
endurance, as discussed next.

• High energy consumption: Compared to reading a PCM
cell, a write operation that SETs or RESETs a PCM
cell draws higher current, uses higher voltage, and
takes longer time (Figure 1). A PCM write often con-
sumes 6–10X more energy than a read [15].

• High latency and low bandwidth: In a PCM device,
the write latency of a PCM cell is determined by the
(longer) SET time, which is about 3X slower than a
read operation [15]. Moreover, many PCM prototypes
support “iterative writing” of a limited number of bits
per iteration in order to limit the instantaneous cur-
rent level. Several prototypes support ×2, ×4, and ×8
write modes in addition to the fastest ×16 mode [3].
This limitation is likely to hold in the future as well, es-
pecially for PCM designed for power-constrained plat-
forms. Because of the limited write bandwidth, writ-
ing 64B of data often requires several rounds of writ-
ing, leading to the ∼ 1 µs write latency in Table 1.

• Limited endurance: Existing PCM prototypes have a
write endurance ranging from 106 to 108 writes per
cell. With a good wear-leveling algorithm, a PCM
main memory can last for several years under realistic
workloads [21]. However, because such wear-leveling
must be done at the memory controller, the wear-
leveling algorithms need to have small memory foot-
prints and be very fast. Therefore, practical algo-
rithms are simple and in many cases, their effective-
ness significantly decreases in the presence of extreme
hot spots in the memory. For example, even with the
wear-leveling algorithms in [21], continuously updat-
ing a counter in PCM in a 4GHz machine with 16GB
PCM could wear a PCM cell out in about 4 months
(without wear-leveling, the cell could wear out in less
than a minute).

Recent studies proposed various hardware optimizations to
reduce the number of PCM bits written [8, 15, 31, 32].
For example, the PCM controller can perform data com-
parison writes, where a write operation is replaced with a
read-modify-write operation in order to skip programming
unchanged bits [31]. Another proposal is partial writes for
only dirty words [15]. In both optimizations, when writ-
ing a chunk of data in multiple iterations, the set of bits to
write in every iteration is often hard-wired for simplicity; if
all the hard-wired bits of an iteration are unchanged, the
iteration can be skipped [7]. However, these architectural
optimizations reduce the volume of writes by only a fac-
tor ∼ 3. We believe that applications (such as databases)
can play an important role in complementing such architec-
tural optimizations by carefully choosing their algorithms
and data structures in order to reduce the number of writes,
even at the expense of additional reads.

Table 2: General Terms.

Term Description Example

Erb Energy consumed for reading a PCM bit 2 pJ
Ewb Energy consumed for writing a PCM bit 16 pJ
Tl Latency of accessing a cache line from PCM 230 cycles
Tw Additional latency of writing a word to PCM 450 cycles
C size in bytes of the largest CPU cache 8 MB
L Cache line size in bytes 64B
W Word size used in PCM writes 8B
Nl Number of cache line fetches from PCM -
Nlw Number of cache line write backs to PCM -
Nw Number of words written to PCM -
γ Avg number of modified bits per modified word -

3. PCMFRIENDLY DB ALGORITHMS
In this section, we consider the impact of PCM on database

algorithm design. Specifically, reducing PCM writes be-
comes an important design goal. We discuss general con-
siderations in Section 3.1. Then we re-examine two core
database techniques, B+-tree index and hash joins, in Sec-
tions 3.2 and 3.3, respectively.

3.1 Algorithm Design Considerations
Section 2 described three candidate organizations of fu-

ture PCM main memory, as shown in Figure 2. Their main
difference is whether or not to include a transparent or
software-controlled DRAM cache. For algorithm design pur-
poses, we consider an abstract framework that captures all
three candidate organizations. Namely, we focus on a PCM
main memory, and view any additional DRAM as just an-
other (transparent or software-controlled) cache in the hier-
archy. This enables us to focus on PCM-specific issues.

Because PCM is the primary main memory, we consider
algorithm designs in main memory. There are two tradi-
tional design goals for main memory algorithms: (i) low
computation complexity, and (ii) good CPU cache perfor-
mance. Power efficiency has recently emerged as a third
design goal. Compared to DRAM, one major challenge in
designing PCM-friendly algorithms is to cope with the asym-
metry between PCM reads and PCM writes: PCM writes
consume much higher energy, take much longer time to com-
plete, and wear out PCM cells (recall Section 2). Therefore,
one important design goal of PCM-friendly algorithms is to
minimize PCM writes.

What granularity of writes should we use in algorithm
analysis with PCM main memory: (a) bits, (b) words, or (c)
cache lines? All three granularities are important for com-
puting PCM metrics. Choice (a) impacts PCM endurance.
Choices (a) and (c) affect PCM energy consumption. Choice
(b) influences PCM write latency. The drawback of choice
(a) is that the relevant metric is the number of modified
bits (recall that unmodified bits are skipped); this is dif-
ficult to estimate because it is often affected not only by
the structure of an algorithm, but also by the input data.
Fortunately, there is often a simple relationship between (a)
and (b). Denote γ as the average number of modified bits
per modified word. γ can be estimated for a given input.
Therefore, we focus on choices (b) and (c).

Let Nl (Tl) be the number (latency, resp.) of cache line
fetches (a.k.a. cache misses) from PCM, Nlw be the num-
ber of cache line write backs to PCM, and Nw (Tw) be the
number (latency, resp.) of modified words written. Let Erb

(Ewb) be the energy for reading (writing, resp.) a PCM bit.
Let L be the number of bytes in a cache line. (Table 2 sum-

marizes the notation used in this paper.) We model the key
PCM metrics as follows:

• TotalWear: NumBitsModified = γNw

• Energy = 8L(Nl + Nlw)Erb + γNwEwb

• TotalPCMAccessLatency = NlTl + NwTw

The total wear and energy computations are straightfor-
ward. The latency computation requires explanations. The
first part (NlTl) is the total latency of cache line fetches
from PCM. The second part (NwTw) is the estimated im-
pact of cache line write backs to PCM on the total time.
In a traditional system, the cache line write backs are per-
formed asynchronously in the background and often com-
pletely hidden. Therefore, algorithm analysis typically ig-
nores the write backs. However, we find that because of the
asymmetry of writes and reads, PCM write latency can keep
PCM busy for a sufficiently long time to stall front-end cache
line fetches significantly. A PCM write consists of (i) a read
of the cache line from PCM to identify modified words then
(ii) writing modified words in possibly multiple rounds. The
above computation includes (ii) as NwTw, while the latency
of (i) (NlwTl) is ignored because it is similar to a traditional
cache line write back and thus likely to be hidden.

3.2 B+Tree Index
As case studies, we consider two core database techniques

for memory-resident data, B+-trees (in the current subsec-
tion) and hash joins (in the next subsection), where the main
memory is PCM instead of DRAM.

B+-trees are preferred index structures for memory-resident
data because they optimize for CPU cache performance.
Previous studies recommend that B+-tree nodes be one or a
few cache lines large and aligned at cache line boundaries [5,
6, 12, 23]. For DRAM-based main memory, the costs of
search/insertion/deletion are similar except in those cases
where insertions/deletions incur node splits/merges in the
tree. In contrast, for PCM-based main memory, even a nor-
mal insertion/deletion that modifies a single leaf node can
be more costly than a search in terms of total wear, energy,
and elapsed time, because of the writes involved.

We would like to preserve the good CPU cache perfor-
mance of B+-trees while reducing the number of writes.
A cache-friendly B+-tree node is typically implemented as
shown in Figure 3(a), where all the keys in the node are
sorted and packed, and a counter keeps track of the number
of valid keys in the array. The sorted key array is maintained
upon insertions and deletions. In this way, binary search can
be applied to locate a search key. However, on average, half
of the array must be moved to make space for insertions
and deletions, resulting in a large number of writes. Sup-
pose that there are K keys and K pointers in the node, and
every key, every pointer, and the counter have size equal
to the word size W used in PCM writes. Then an inser-
tion/deletion in the sorted node incurs 2(K/2) + 1 = K + 1
word writes on average.

To reduce writes, we propose two simple unsorted node
organizations as shown in Figures 3(b) and 3(c):

• Unsorted: As shown in Figure 3(b), the key array
is still packed but can be out of order. A search has
to scan the array sequentially in order to look for a
match or the next smaller/bigger key. On the other
hand, an insertion can simply append the new entry to

5 2 4 7 8 9

pointers

keysnum

5 8 2 9 4 7

pointers

keysnum

pointers

keysbitmap

8 74921011
1010

(a) Sorted (b) Unsorted (c) Unsorted w/ bitmap

Figure 3: B+-tree node organizations.

Table 3: Terms used in analyzing hash joins.
Term Description

MR, MS Number of records in relation R and S, respectively
LR, LS Record sizes in relation R and S, respectively

NhR
Number of cache line accesses per hash table visit
when building the hash table on R records

NhS
Number of cache line accesses per hash table visit
when probing the hash table for S records

HashTablelw Number of line write backs per hash table insertion
HashTablew Number of words modified per hash table insertion
MatchPerR Number of matches per R record
MatchPerS Number of matches per S record

the end of the array, then increment the counter. For
a deletion, one can overwrite the entry to delete with
the last entry in the array, then decrement the counter.
Therefore, an insertion/deletion incurs 3 word writes.

• Unsorted with bitmap: We further improve the un-
sorted organization by allowing the key array to have
holes. The counter field is replaced with a bitmap
recording valid locations. An insertion writes the new
entry to an empty location and updates the bitmap,
using 3 word writes, while a deletion updates only the
bit in the bitmap, using 1 word write. A search incurs
the instruction overhead of a more complicated search
process. For 8-byte keys and pointers, a 64-bit bitmap
can support nodes up to 1024 bytes large, which is
more than enough for supporting typical cache-friendly
B+-tree nodes.

Given the pros and cons of the three node organizations,
we study the following four variants of B+-trees:

• Sorted: a normal cache-friendly B+-tree. All the non-
leaf and leaf nodes are sorted.

• Unsorted: a cache-friendly B+-tree with all the non-
leaf and leaf nodes unsorted.

• Unsorted leaf: a cache-friendly B+-tree with sorted
non-leaf nodes but unsorted leaf nodes. Because most
insertions/deletions do not modify non-leaf nodes, the
unsorted leaf nodes may capture most of the benefits.

• Unsorted leaf with bitmap: This variant is the
same as unsorted leaf except that leaf nodes are orga-
nized as unsorted nodes with bitmaps.

Our experimental results in Section 4 show that the unsorted
schemes can significantly improve total wear, energy con-
sumption, and run time for insertions and deletions. Among
the three unsorted schemes, unsorted leaf is the best for in-
dex insertions and it incurs negligible index search overhead,
while unsorted leaf with bitmap achieves the best index dele-
tion performance.

3.3 Hash Joins
One of the most efficient join algorithms, hash joins are

widely used in data management systems. Several cache-
friendly variants of hash joins are proposed in the litera-
ture [1, 4, 27]. Most of these algorithms are based on the

Algorithm 1 Existing algorithm: simple hash join.

Build phase:

1: for (i = 0; i < MR; i++) do
2: r= record i in Relation R;
3: insert r into hash table;

Probe phase:

1: for (j = 0; j < MS ; j++) do
2: s= record j in Relation S;
3: probe s in the hash table;
4: if there are match(es) then
5: generate join result(s) from the matching records;
6: send join result(s) to the upper-level operator;

Algorithm 2 Existing algorithm: cache partitioning.2

Partition phase:

1: htsize = MR∗ hash table per entry metadata size;
2: P = ⌈(MRLR + MSLS + htsize)/C⌉;
3: for (i = 0; i < MR; i++) do {partition R}
4: r= record i in Relation R;
5: p= hash(r) modulo P ;
6: copy r to partition Rp;
7: for (j = 0; j < MS ; j++) do {partition S}
8: s= record j in Relation S;
9: p= hash(s) modulo P ;

10: copy s to partition Sp;

Join phase:

1: for (p = 0; p < P ; p++) do
2: join Rp and Sp using simple hash join;

following two representative algorithms. (Table 3 defines the
terms used in describing and analyzing the algorithms.)

Simple Hash Join. As shown in Algorithm 1, in the build
phase, the algorithm scans the smaller build relation R. For
every build record, it computes a hash code from the join
key, and inserts the record into the hash table. In the probe
phase, the algorithm scans the larger probe relation S. For
every probe record, it computes the hash code, and probes
the hash table. If there are matching build records, the al-
gorithm computes the join results, and sends them to upper
level query operators.

The cost of this algorithm can be analyzed as in Table 4
with the terms defined in Table 3. Here, we assume that the
hash table does not fit into CPU cache, which is usually the
case. We do not include PCM costs for the join results as
they are often consumed in the CPU cache by higher-level
operators in the query plan tree.

The cache misses of the build phase are caused by reading
all the join keys (min(MRLR

L
, MR)) and accessing the hash

table (MRNhR). When the record size is small, the first
term is similar to reading the entire build relation. When
the record size is large, it incurs roughly one cache miss
per record. Note that because multiple entries may share a
single hash bucket, the lines written back can be a subset of
the lines accessed for a hash table visit. For the probe phase,
the cache misses are caused by scanning the probe relation
(MSLS

L
), accessing the hash table (MSNhS), and accessing

matching build records in a random fashion. The latter can
be computed as shown in Figure 4. The other computations
are straightforward.

Algorithm 3 Our proposal: virtual partitioning.2

Partition phase:

1: htsize = MR∗ hash table per entry metadata size;
2: P = ⌈((MR + MS)2 + MR(LR − 1 + L) + MS(LS − 1 +

L) + htsize)/C⌉;
3: initiate ID lists RList[0..P − 1] and SList[0..P − 1];
4: for (i = 0; i < MR; i++) do {virtually partition R}
5: r= record i in Relation R;
6: p= hash(r) modulo P ;
7: append ID i into RList[p];
8: for (j = 0; j < MS ; j++) do {virtually partition S}
9: s= record j in Relation S;

10: p= hash(s) modulo P ;
11: append ID j into SList[p];

Join phase:

1: for (p = 0; p < P ; p++) do {join Rp and Sp}
2: for each i in RList[p] do
3: r= record i in Relation R;
4: insert r into hash table;
5: for each j in SList[p] do
6: s= record j in Relation S;
7: probe s in the hash table;
8: if there are match(es) then
9: generate join result(s) from the matching records;

10: send join result(s) to the upper-level operator;

L−x+1 cases

x−1 cases

cache line boundaries x−1 x1 L

Figure 4: Computing average number of cache
misses for unaligned records. A record of size =
yL+x bytes, y ≥ 0, L > x ≥ 0, has L possible locations
relative to cache line boundaries. Accessing the
record incurs on average x−1

L
2+ L−x+1

L
+y = size−1

L
+1

cache misses.

Cache Partitioning. When both input relation sizes are
fixed, if we reduce the record sizes (LR, LS), then the num-
bers of records (MR, MS) increase. Therefore, simple hash
join incurs a large number of cache misses when record sizes
are small. The cache partitioning algorithm solves this prob-
lem. As shown in Algorithm 2, in the partition phase, the
two input relations (R and S) are hash partitioned so that
every pair of partitions (Rp and Sp) can fit into the CPU
cache. Then in the join phase, every pair of Rp and Sp are
joined using the simple hash join algorithm.

The cost analysis of cache partitioning is straightforward
as shown in Table 4. Note that we assume that modified
cache lines during the partition phase are not prematurely
evicted because of cache conflicts. Observe that the number
of cache misses using cache partitioning is constant if the
relation sizes are fixed. This addresses the above problem
of simple hash join.

2For simplicity, Algorithm 2 and Algorithm 3 assume perfect par-
titioning when generating cache-sized partitions. To cope with
data skews, one can increase the number of partitions P so that
even the largest partition can fit into the CPU cache. Note that
using a larger P does not change the algorithm analysis.

Table 4: Cost analysis for three hash join algorithms.
Algorithm Cache Line Accesses from PCM (Nl) Cache Line Write Backs (Nlw) Words Written (Nw)

Simple
Hash

Build min(MRLR

L
, MR) + MRNhR MRHashTablelw MRHashTablew

Probe MSLS

L
+ MSNhS + MSMatchPerS(LR−1

L
+ 1) 0 0

Cache
Partition

Partition 2(MRLR

L
+ MSLS

L
) MRLR

L
+ MSLS

L

MRLR

W
+ MSLS

W

Join MRLR

L
+ MSLS

L
0 0

Virtual
Partition

Partition MRLR

L
+ MSLS

L
+ (MR + MS) 2

L
(MR + MS) 2

L
(MR + MS) 2

W

Join (MR + MS) 2

L
+ MR(LR−1

L
+ 1) + MS(LS−1

L
+ 1) 0 0

(a) Cache accesses (Nl) (b) Total wear (c) Energy (d) Total PCM access latency

simple hash join cache partitioning virtual partitioningsimple hash join cache partitioning virtual partitioning

Figure 5: Comparing three hash join algorithms analytically. (LS = LR, MatchPerS = 1, γ = 0.5; the hash
table in simple hash join does not fit into cache; hash table access parameters are based on experimental
measurements: NhR ≃ NhS = 1.8, HashTablelw = 1.5, HashTablew = 5.0.) For configurations where virtual
partitioning is the best scheme, contour lines show the relative benefits of virtual partitioning compared to
the second best scheme.

However, cache partitioning introduces a large number
of writes compared to simple hash join: it is writing the
amount of data equivalent to the size of the entire input re-
lations. As writes are bad for PCM, we would like to design
an algorithm that reduces the writes while still achieving
similar benefits of cache partitioning. We propose the fol-
lowing variant of cache partitioning.

New: Virtual Partitioning. Instead of physically copy-
ing input records into partitions, we perform the partitioning
virtually. As shown in Algorithm 3, in the partition phase,
for every partition, we compute and remember the record
IDs that belong to the partition for both R and S.3 Then
in the join phase, we can use the record ID lists to join the
records of a pair of partitions in place, thus avoiding the
large number of writes in cache partitioning.

We optimize the record ID list implementation by storing
the deltas of two subsequent record IDs to further reduce the
writes. As the number of cache partitions is often smaller
than a thousand, we find using two-byte integers can encode
most deltas. For rare cases with larger deltas, we reserve
0xFFFF to indicate that a full record ID is recorded next.

The costs of the virtual partitioning algorithm is analyzed
in Table 4. The costs for the partition phase include scan-
ning the two relations as well as generating the record ID
lists. The latter writes two bytes per record. In the join

3We assume that there is a simple mapping between a record
ID and the record location in memory. For example, if fixed
length records are stored consecutively in an array, then the array
index can be used as the record ID. If records always start at 8B
boundaries, then the record ID of a record can be the record
starting address divided by 8.

phase, the records are accessed in place. They are essen-
tially scattered in the two input relations. Therefore, we
use the formula for unaligned records in Figure 4 to com-
pute the number of cache misses for accessing the build and
probe records. Note that the computation of the number of
partitions P in Algorithm 3 guarantees that the total cache
lines accessed per pair of Rp and Sp fit into the CPU cache
capacity C.

Comparisons of the Three Algorithms. Figure 5 com-
pares the three algorithms analytically using the formulas
in Table 4. We assume R and S have the same record size,
and it is a primary-foreign key join (thus MatchPerS = 1).
From left to right, Figures 5(a) to (d) show the comparison
results for four metrics: (a) cache accesses (Nl), (b) total
wear, (c) energy, and (d) total PCM access latency. In each
figure, we vary the record size from 1 to 500 bytes, and the
number of matches per R record (MatchPerR) from 1 to
50. Every point represents a configuration for the hash join.
The color of a point shows the best scheme for the corre-
sponding configuration: blue for simple hash join, red for
cache partitioning, and green for virtual partitioning. For
configurations where virtual partitioning is the best scheme,
the contour lines show the relative benefits of virtual parti-
tioning compared to the second best scheme.

Figure 5(a) focuses on CPU cache performance, which is
the main consideration for previous cache-friendly hash join
designs. We see that as expected, simple hash join is the best
scheme when record size is very large and cache partition-
ing is the best scheme when record size is small. Compared
to simple hash join, virtual partitioning avoids the many
cache misses caused by hash table accesses. Compared to

cache partitioning, virtual partitioning reduces the number
of cache misses during the partition phase, while paying ex-
tra cache misses for accessing scattered records in the join
phase. As a result, virtual partitioning achieves the smallest
number of cache misses for a large number of configurations
in the middle between the red and blue points.

Figures 5(b) to (d) show the comparison results for the
three PCM metrics. First of all, we see that the figures
are significantly different from Figure 5(a). This means
that introducing PCM main memory can significantly im-
pact the relative benefits of the algorithms. Second, very
few configurations benefit from cache partitioning because
it incurs a large number of PCM writes in the partition
phase, adversely impacting its PCM performance. Third, in
Figure 5(b), virtual partitioning achieves the smallest num-
ber of writes when MatchPerR ≤ 18. Virtual partitioning
avoids many of the expensive PCM writes in the partition
phase of the cache partitioning algorithm. Interestingly,
simple hash join achieves the smallest number of writes
when MatchPerR ≥ 19. This is because as MatchPerR
increases, the number of S records (MS) increases propor-
tionally, leading to a larger number of PCM writes for virtual
partitioning, while the number of PCM writes in simple hash
join is not affected. The cross-over point is 19 here. Finally,
virtual partitioning presents a good balance between cache
line accesses and PCM writes, and it excels in energy and
total PCM access latency in most cases.

4. EXPERIMENTAL EVALUATION
We evaluate our proposed B+-tree and hash join algo-

rithms through cycle-accurate simulations in this section.
We start by describing the simulator used in the experi-
ments. Then we present the experimental results for B+-
trees and hash joins. Finally, we perform sensitivity analysis
for PCM parameters.

4.1 Simulation Platform
We extended a cycle-accurate out-of-order X86-64 sim-

ulator, PTLsim [20], with PCM support. PTLsim is used
extensively in computer architecture studies and is currently
the only publicly available cycle-accurate simulator for out-
of-order x86 micro-architectures. The simulator models the
details of a superscalar out-of-order processor, including in-
struction decoding, micro-code, branch prediction, function
units, speculation, and a three-level cache hierarchy. PTL-
sim has multiple use modes; we use PTLsim to simulate
single 64-bit user-space applications in our experiments.

We extended PTLsim in the following ways to model PCM.
First, we model data comparison writes for PCM writes.
When writing a cache line to PCM, we compare the new
line with the original line to compute the number of modi-
fied bits and the number of modified words. The former is
used to compute PCM energy consumption, while the latter
impacts PCM write latency. Second, we model four paral-
lel PCM memory ranks. Accesses to different ranks can be
carried out in parallel. Third, we model the details of cache
line write back operations carefully. Previously, PTLsim as-
sumes that cache line write backs can be hidden completely,
and does not model the details of this operation. Because
PCM write latency is significantly longer than its read la-
tency, cache line write backs may actually keep the PCM
busy for a sufficiently long time to stall front-end cache line
fetches. Therefore, we implemented a 32-entry FIFO write

Table 5: Simulation Setup.

Simulator PTLsim enhanced with PCM support
Processor Out-of-order X86-64 core, 3GHz

CPU
cache

Private L1D (32KB, 8-way, 4-cycle latency),
private L2 (256KB, 8-way, 11-cycle latency),
shared L3 (8MB, 16-way, 39-cycle latency),
all caches with 64B lines,
64-entry DTLB, 32-entry write back queue

PCM
4 ranks, read latency for a cache line: 230 cycles,
write latency per 8B modified word: 450 cycles,
Erb = 2 pJ, Ewb = 16 pJ

queue in the on-chip memory controller, which keeps track
of dirty cache line evictions and performs the PCM writes
asynchronously in the background.

Table 5 describes the simulation parameters. The cache
hierarchy is modeled after the recent Intel Nehalem pro-
cessors [14]. The PCM latency and energy parameters are
based on a previous computer architecture study [15]. We
adjusted the latency in cycles according to the 3GHz pro-
cessor frequency and the DDR3 bus latency. The word size
of 8 bytes per iteration of write operations is based on [8].

4.2 B+Tree Index
We implemented four variants of B+-trees as described in

Section 3.2: sorted, unsorted, unsorted leaf, and unsorted
leaf with bitmap. Figure 6 compares the four schemes for
common index operations. In every experiment, we popu-
late the trees with 50 million entries. An entry consists of
an 8-byte integer key and an 8-byte pointer. We populate
the nodes 75% full initially. We randomly shuffle the entries
in all unsorted nodes so that the nodes represent the sta-
ble situations after updates. Note that the total tree size is
over 1GB, much larger than the largest CPU cache (8MB).
For the insertion experiments, we insert 500 thousand ran-
dom new entries into the trees back to back, and report
total wear in number of PCM bits modified, PCM energy
consumption in millijoules, and execution time in cycles for
the entire operation. Similarly, we measure the performance
of 500 thousand back-to-back deletions for the deletion ex-
periments, and 500 thousand back-to-back searches for the
search experiments. We vary the node size of the trees. As
suggested by previous studies, the best tree node sizes are
a few cache lines large [5, 12]. Since a one-line (64B) node
can contain only 3 entries, which makes the tree very deep,
we show results for node sizes of 2, 4, and 8 cache lines.

The sub-figures in Figure 6 are arranged as a 3x3 ma-
trix. Every row corresponds to a node size. Every column
corresponds to a performance metric. In every sub-figure,
there are three groups of bars, corresponding to the inser-
tion, deletion, and search experiments. The bars in each
group show the performance of the four schemes. (Note that
search does not incur any wear.) We observe the following
points in Figure 6.

First, compared to the conventional sorted trees, all the
three unsorted schemes achieve better total wear, energy
consumption, and execution time for insertions and dele-
tions, the two index operations that incur PCM writes. The
sorted trees pay the cost of moving the sorted array of en-
tries in a node to accommodate insertions and deletions. In
contrast, the unsorted schemes all save PCM writes by al-
lowing entries to be unsorted upon insertions and deletions.
This saving increases as the node size increases. Therefore,

2E+7

4E+7

6E+7

8E+7
m

b
it
s
m
o
d
if
ie
d

0E+0

2E+7

4E+7

6E+7

8E+7

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

0E+0

2E+7

4E+7

6E+7

8E+7

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

0E+0

2E+7

4E+7

6E+7

8E+7

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

8

0

2

4

6

8

insert delete search

e
n
e
rg
y
(m

J)

0

2

4

6

8

insert delete search

e
n
e
rg
y
(m

J)

3E+9

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

(a) Total wear (2-line nodes) (b) PCM energy (2-line nodes) (c) Execution time (2-line nodes)

5.0E+7

1.0E+8

1.5E+8

m
b
it
s
m
o
d
if
ie
d

0.0E+0

5.0E+7

1.0E+8

1.5E+8

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

0.0E+0

5.0E+7

1.0E+8

1.5E+8

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

0.0E+0

5.0E+7

1.0E+8

1.5E+8

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

10

0

2

4

6

8

10

insert delete search

e
n
e
rg
y
(m

J)

0

2

4

6

8

10

insert delete search

e
n
e
rg
y
(m

J)

3E+9

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

insert delete search

cy
cl
e
s

(d) Total wear (4-line nodes) (e) PCM energy (4-line nodes) (f) Execution time (4-line nodes)

1E+8

2E+8

3E+8

m
b
it
s
m
o
d
if
ie
d

0E+0

1E+8

2E+8

3E+8

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

0E+0

1E+8

2E+8

3E+8

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

0E+0

1E+8

2E+8

3E+8

insert delete search

n
u
m

b
it
s
m
o
d
if
ie
d

15

0

5

10

15

insert delete search

e
n
e
rg
y
(m

J)

0

5

10

15

insert delete search

e
n
e
rg
y
(m

J)

4E+9

5E+9

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

insert delete search

cy
cl
e
s

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

insert delete search

cy
cl
e
s

(g) Total wear (8-line nodes) (h) PCM energy (8-line nodes) (i) Execution time (8-line nodes)

sorted unsorted unsorted leaf unsorted leaf bmp

Figure 6: B+-tree performance. (50 million entries in trees; 75% full; “insert”: inserting 500 thousand
random keys; “delete”: randomly deleting 500 thousand existing keys; “search”: searching for 500 thousand
random keys)

the performance gaps widen as the node size grows from 2
cache lines to 8 cache lines.

Second, compared to the conventional sorted trees, the
scheme with all nodes unsorted suffers from slower search
time by a factor of 1.13–1.46X because the hot, top tree
nodes stay in CPU cache, and a search incurs a lot of in-
struction overhead in the unsorted non-leaf nodes. In con-
trast, the two schemes with only unsorted leaf nodes achieve
similar search time as the sorted scheme.

Third, comparing the two unsorted leaf schemes, we see
that unsorted leaf with bitmap achieves better total wear,
energy, and time for deletions. This is because unsorted
leaf with bitmap often only needs to mark one bit in a leaf
bitmap for a deletion (and the total wear is about 5E5 bits
modified), while unsorted leaf has to overwrite the deleted
entry with the last entry in a leaf node and update the
counter in the node. On the other hand, the unsorted leaf
with bitmap suffers from slightly higher insertion time be-
cause of the instruction overhead of handling the bitmap
and the holes in a leaf node.

Overall, we find that the two unsorted leaf schemes achieve
the best performance. Compared to the conventional sorted
B+-tree, the unsorted leaf schemes improve total wear by

a factor of 7.7–436X, energy consumption by a factor of
1.7–2.5X, and execution time by a factor of 2.0–2.5X for
insertions and deletions, while achieving similar search per-
formance. If the index workload consists of mainly insertions
and searches (with the tree size growing), we recommend the
normal unsorted leaf. If the index workload contains a lot
of insertions and a lot of deletions (e.g., the tree size stays
roughly the same), we recommend the unsorted leaf scheme
with bitmap.

4.3 Hash Joins
We implemented the three hash join algorithms as dis-

cussed in Section 3.3: simple hash join, cache partitioning,
and virtual partitioning. We model in-memory join opera-
tions, where the input relations R and S are in main mem-
ory. The algorithms build in-memory hash tables on the R
relation. To hash a R record, we compute an integer hash
code from its join key field, and modulo this hash code by
the size of the hash table to obtain the hash slot. Then we
insert (hash code, pointer to the R record) into the hash
slot. Conflicts are resolved through chained hashing. To
probe an S record, we compute the hash code from its join
key field, and use the hash code to look up the hash ta-

����

����

��
�	

��
�	�

�
����

�	
��

�	�
��
���

����

����

����

����

	�
 ��
 ��
 ��
 ���

��
�	

��
�	�

�
����

�	
��

�	�
��
���

���������	�

����

����

����

����

	�
 ��
 ��
 ��
 ���

��
�	

��
�	�

�
����

�	
��

�	�
��
���

���������	�

����

����

����

����

	�
 ��
 ��
 ��
 ���

��
�	

��
�	�

�
����

�	
��

�	�
��
���

���������	�

30

40

J)

0

10

20

30

40

20B 40B 60B 80B 100B

e
n
e
rg
y
(m

J)

record size

4E+9

6E+9

8E+9

1E+10

cy
cl
e
s

0E+0

2E+9

4E+9

6E+9

8E+9

1E+10

20B 40B 60B 80B 100B

cy
cl
e
s

record size

0E+0

2E+9

4E+9

6E+9

8E+9

1E+10

20B 40B 60B 80B 100B

cy
cl
e
s

record size

0E+0

2E+9

4E+9

6E+9

8E+9

1E+10

20B 40B 60B 80B 100B

cy
cl
e
s

record size

0E+0

2E+9

4E+9

6E+9

8E+9

1E+10

20B 40B 60B 80B 100B

cy
cl
e
s

record size

0E+0

2E+9

4E+9

6E+9

8E+9

1E+10

20B 40B 60B 80B 100B

cy
cl
e
s

record size

(a) Total wear (b) PCM energy (c) Execution time
(2 matches per R record) (2 matches per R record) (2 matches per R record)

���

�����

��
�	

��
�	�

�
����

�	
��

�	�
��
���

����

����

���	

���

�����

� � � � 	

��
�	

��
�	�

�
����

�	
��

�	�
��
���

���������	
��	����	����
����

����

���	

���

�����

� � � � 	

��
�	

��
�	�

�
����

�	
��

�	�
��
���

���������	
��	����	����
����

����

���	

���

�����

� � � � 	

��
�	

��
�	�

�
����

�	
��

�	�
��
���

���������	
��	����	����

50

60

70

J)

0

10

20

30

40

50

60

70

1 2 4 6 8

e
n
e
rg
y
(m

J)

nummatches per R record

2E+10

3E+10

cy
cl
e
s

0E+0

1E+10

2E+10

3E+10

1 2 4 6 8

cy
cl
e
s

nummatches per R record

0E+0

1E+10

2E+10

3E+10

1 2 4 6 8

cy
cl
e
s

nummatches per R record

0E+0

1E+10

2E+10

3E+10

1 2 4 6 8

cy
cl
e
s

nummatches per R record

0E+0

1E+10

2E+10

3E+10

1 2 4 6 8

cy
cl
e
s

nummatches per R record

0E+0

1E+10

2E+10

3E+10

1 2 4 6 8

cy
cl
e
s

nummatches per R record

(d) Total wear (60B records) (e) PCM energy (60B records) (f) Execution time (60B records)

simple hash join cache partitioning virtual partitioningsimple hash join cache partitioning virtual partitioning

Figure 7: Hash join performance. (50MB R table joins S table, varying the record size from 20B to 100B
and varying the number of matches per R record from 1 to 8.)

ble. When there is an entry with the matching hash code,
we check the associated R record to make sure that the join
keys actually match. The join results are sent to a high-level
operator that consumes the results. In our implementation,
the high-level operator simply increments a counter.

Figure 7 compares the three hash join algorithms. The
R relation is 50MB large. Both relations have the same
record size. We vary the record size from 20B to 100B in
Figures 7(a)–(c). We vary the number of matches per R
record (MatchPerR) from 1 to 8 in Figures 7(d)–(f); in
other words, the size of S varies from 50MB to 400MB. We
report total wear, energy consumption, and execution times
for every set of experiments.

The results in Figure 7 confirm our analytical comparison
in Section 3.3. First, cache partitioning performs poorly
in almost all cases because it performs a large number of
PCM writes in its partition phase. This results in much
higher total wear, higher energy consumption, and longer
execution time compared to the other two schemes.

Second, compared to simple hash join, when varying record
size from 20B to 100B, virtual partitioning improves total
wear by a factor of 4.7–5.2X, energy consumption by a factor
of 2.3–1.4X, and execution time by a factor of 1.24–1.12X.
When varying MatchPerR from 1 to 8, virtual partitioning
improves total wear by a factor of 8.6–1.5X, energy con-
sumption by a factor of 1.61–1.59X, and execution time by
a factor of 1.19–1.11X.

Overall, virtual partitioning achieves the best performance
among the three schemes in all the experiments. Compared
to cache partitioning, virtual partitioning avoids copying
data in the partition phase by remembering record IDs per
partition. Compared to simple hash join, virtual partition-
ing avoids excessive cache misses due to hash table accesses.
Therefore, virtual partitioning achieves good behaviors for
both PCM writes and cache accesses. Note that the record

size and MatchPerR settings in the experiments fall in the
region where virtual partitioning wins in Figure 5. There-
fore, the experimental results confirm our analytical com-
parison in Section 3.3.

4.4 PCM Parameter Sensitivity Analysis
In this section, we vary the energy and latency parameters

of PCM in the simulator, and study the impact of the pa-
rameter changes on the performance of the B+-tree and hash
join algorithms. Note that we still assume data comparison
writes for PCM write.

Figure 8 varies the energy consumed by writing a PCM
bit (Ewb) from 2pJ to 64pJ. The default value of Ewb is
16pJ, and 2pJ is the same as the energy consumed by read-
ing a PCM bit. From left to right, Figures 8(a)–(c) show
the impact of varying Ewb on the energy consumptions of
B+-tree insertions, B+-tree deletions, and hash joins. First,
we see that as Ewb gets smaller, the curves become flat; the
energy consumption is more and more dominated by the
cache line fetches for reads and for data comparison writes.
Second, as Ewb gets larger, the curves increase upwards be-
cause the larger Ewb contributes significantly to the overall
energy consumption. Third, changing Ewb does not quali-
tatively change our previous conclusions. For B+-trees, the
two unsorted leaf schemes are still better than sorted B+-
trees. Among the three hash join algorithms, virtual parti-
tioning is still the best.

Figure 9 varies the latency of writing a word to PCM
(Tw) from 230 cycles to 690 cycles. The default Tw is 450
cycles, and 230 is the same latency as reading a cache line
from PCM. From left to right, Figures 8(a)–(c) show the
impact of varying Tw on the execution times of B+-tree in-
sertions, B+-tree deletions, and hash joins. We see that as
Tw increases, the performance gaps among different schemes
become larger. (The performance gap between simple hash

5

10

15

20

25

30
e
n
e
rg
y
(m

J)
sorted

unsorted leaf

unsorted leaf bmp

0

5

10

15

20

25

30

2 4 8 16 32 64

e
n
e
rg
y
(m

J)

Ewb (pJ)

sorted

unsorted leaf

unsorted leaf bmp

0

5

10

15

20

25

30

2 4 8 16 32 64

e
n
e
rg
y
(m

J)

Ewb (pJ)

sorted

unsorted leaf

unsorted leaf bmp
15

20

25

(m
J)

sorted

unsorted leaf

unsorted leaf bmp

0

5

10

15

20

25

2 4 8 16 32 64

e
n
e
rg
y
(m

J)

Ewb (pJ)

sorted

unsorted leaf

unsorted leaf bmp

20

30

40

50

60

e
n
e
rg
y
(m

J)

simple hash join

cache partitioning

virtual partitioning

0

10

20

30

40

50

60

2 4 8 16 32 64

e
n
e
rg
y
(m

J)

Ewb (pJ)

simple hash join

cache partitioning

virtual partitioning

(a) B+-tree insertions (b) B+-tree deletions (c) Hash joins (2 matches per R record, 60B)

Figure 8: Sensitivity analysis: varying energy consumed for writing a PCM bit (Ewb).

8

10

9
)

sorted

unsorted leaf

0

2

4

6

8

10

230 450 690

cy
cl
e
s
(x
1
e
9
)

Tw (cycles)

sorted

unsorted leaf

unsorted leafbmp

0

2

4

6

8

10

230 450 690

cy
cl
e
s
(x
1
e
9
)

Tw (cycles)

sorted

unsorted leaf

unsorted leafbmp

0

2

4

6

8

10

230 450 690

cy
cl
e
s
(x
1
e
9
)

Tw (cycles)

sorted

unsorted leaf

unsorted leafbmp

0

2

4

6

8

10

230 450 690

cy
cl
e
s
(x
1
e
9
)

Tw (cycles)

sorted

unsorted leaf

unsorted leafbmp
8

10

9
)

sorted

unsorted leaf

0

2

4

6

8

10

230 450 690

cy
cl
e
s
(x
1
e
9
)

Tw (cycles)

sorted

unsorted leaf

unsorted leafbmp

0

2

4

6

8

10

230 450 690

cy
cl
e
s
(x
1
e
9
)

Tw (cycles)

sorted

unsorted leaf

unsorted leafbmp

5

10

15

le
s
(x
1
e
9
)

simple hash join

cache partitioning

virtual partitioning

0

5

10

15

230 450 690

cy
cl
e
s
(x
1
e
9
)

Tw (cycles)

simple hash join

cache partitioning

virtual partitioning

(a) B+-tree insertions (b) B+-tree deletions (c) Hash joins (2 matches per R record, 60B)

Figure 9: Sensitivity analysis: varying latency of writing a word to PCM (Tw).

join and virtual partitioning is 6% when Tw is 230 cycles.)
We find that previous conclusions still hold for B+-trees and
hash joins.

5. RELATED WORK

PCM Architecture. As discussed in previous sections,
several recent studies from the computer architecture com-
munity have proposed solutions to make PCM a replacement
for or an addition to DRAM main memory. These studies
address various issues including improving endurance [15,
21, 22, 32], improving write latency by reducing the number
of PCM bits written [8, 15, 31, 32], preventing malicious
wear-outs [26], and supporting error corrections [25]. How-
ever, these studies focus on hardware design issues that are
orthogonal to our focus on designing efficient algorithms for
software running on PCM.

PCM-Based File Systems. BPFS [9], a file system de-
signed for byte-addressable persistent memory, exploits both
the byte-addressability and non-volatility of PCM. In addi-
tion to being significantly faster than disk-based file sys-
tems (even when they are run on DRAM), BPFS provides
strong safety and consistency guarantees by using a new
technique called short-circuit shadow paging. Unlike tradi-
tional shadow paging file systems, BPFS uses copy-on-write
at fine granularity to atomically commit small changes at
any level of the file system tree. This avoids updates to the
file system triggering a cascade of copy-on-write operations
from the modified location up to the root of the file system
tree. BPFS is a file system, and hence it does not consider
the database algorithms we consider. Moreover, BPFS has
been designed for the general class of byte-addressable per-
sistent memory, and it does not consider PCM-specific issues
such as read-write asymmetry or limited endurance.

Battery-Backed DRAM. Battery-backed DRAM (BB-
DRAM) has been studied as a byte-addressable, persistent
memory. The Rio file cache [16] uses BBDRAM as the buffer
cache, eliminating any need to flush dirty data to disk. The

Rio cache has also been integrated into databases as a per-
sistent database buffer cache [18]. The Conquest file sys-
tem [29] uses BBDRAM to store small files and metadata.
eNVy [30] placed flash memory on the memory bus by us-
ing a special controller equipped with a BBDRAM buffer
to hide the block-addressable nature of flash. WAFL [13]
keeps file system changes in a log in BBDRAM and only
occasionally flushes them to disk. While BBDRAM may
be an alternative to PCM, PCM has two main advantages
over BBDRAM. First, BBDRAM is vulnerable to correlated
failures; for example, the UPS battery will often fail ei-
ther before or along with primary power, leaving no time
to copy data out of DRAM. Second, PCM is expected to
scale much better that DRAM, making it a better long-term
option for persistent storage [3]. On the other hand, using
PCM requires dealing with expensive writes and limited en-
durance, a challenge not present with BBDRAM. Therefore,
BBDRAM-based algorithms do not require addressing the
challenges studied in this paper.

Main Memory Database Systems and Cache-Friendly
Algorithms. Main memory database systems [11] maintain
necessary data structures in DRAM and hence can exploit
DRAM’s byte-addressable property. As discussed in Sec-
tion 3.1, the traditional design goals of main memory algo-
rithms are low computation complexity and good CPU cache
performance. Like BBDRAM-based systems, main mem-
ory database systems do not need to address PCM-specific
challenges. In this paper, we found that for PCM-friendly
algorithms, one important design goal is to minimize PCM
writes. Compared to previous cache-friendly B+-trees and
hash joins, our new algorithms achieve significantly better
performance in terms of PCM total wear, energy consump-
tion, and execution time.

6. CONCLUSION
A promising non-volatile memory technology, PCM is ex-

pected to play an important role in the memory hierarchy
in the near future. This paper focuses on exploiting PCM

as main memory for database systems. Based on the unique
characteristics of PCM (as opposed to DRAM and NAND
flash), we identified the importance of reducing PCM writes
for optimizing PCM endurance, energy, and performance.
Specifically, we applied this observation to database algo-
rithm design, and proposed new B+-tree and hash join de-
signs that significantly improve the state-of-the-art.

As future work in the PCM-DB project, we are interested
in optimizing PCM writes for different aspects of database
system designs, including important data structures, query
processing algorithms, and transaction logging and recovery.
The latter is important for achieving transaction atomicity
and durability. BPFS proposed a different solution based
on shadow copying and atomic writes [9]. It is interesting
to compare this proposal with conventional database trans-
action logging, given the goal of reducing PCM writes.

Moreover, another interesting aspect to study is the fine-
grain non-volatility of PCM. Challenges may arise in hierar-
chies where DRAM is explicitly controlled by software. Be-
cause DRAM contents are lost upon restart, the relationship
between DRAM and PCM must be managed carefully; for
example, pointers to DRAM objects should not be stored in
PCM. On the other hand, the fine-grain non-volatility may
enable new features, such as “instant-reboot” that resumes
the execution states of long-running queries upon crash re-
covery so that useful work is not lost.

7. REFERENCES
[1] P. A. Boncz, S. Manegold, and M. L. Kersten.

Database architecture optimized for the new
bottleneck: Memory access. In VLDB, 1999.

[2] L. Bouganim, B. Jónsson, and P. Bonnet. uFLIP:
Understanding flash IO patterns. In CIDR, 2009.

[3] G. W. Burr, M. J. Breitwisch, M. Franceschini,
D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi,
C. Lam, L. A. Lastras, A. Padilla, B. Rajendran,
S. Raoux, and R. S. Shenoy. Phase change memory
technology. J. Vacuum Science, 28(2), 2010.

[4] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving hash join performance through
prefetching. In ICDE, 2004.

[5] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving
index performance through prefetching. In SIGMOD,
2001.

[6] S. Chen, P. B. Gibbons, T. C. Mowry, and
G. Valentin. Fractal prefetching B+-trees: Optimizing
both cache and disk performance. In SIGMOD, 2002.

[7] S. Cho. Personal communication, 2010.

[8] S. Cho and H. Lee. Flip-N-Write: A simple
deterministic technique to improve PRAM write
performance, energy and endurance. In MICRO, 2009.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C.
Lee, D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In SOSP, 2009.

[10] E. Doller. Phase change memory and its impacts on
memory hierarchy. http://www.pdl.cmu.edu/SDI/
2009/slides/Numonyx.pdf, 2009.

[11] H. Garcia-Molina and K. Salem. Main memory
database systems: An overview. IEEE TKDE, 4(6),
1992.

[12] R. A. Hankins and J. M. Patel. Effect of node size on

the performance of cache-conscious B+-trees. In
SIGMETRICS, 2003.

[13] D. Hitz, J. Lau, and M. Malcolm. File system design
for an NFS file server appliance. In USENIX Winter
Technical Conference, 1994.

[14] Intel Corp. First the tick, now the tock: Intel
micro-architecture (Nehalem). http://www.intel.com/
technology/architecture-silicon/next-gen/319724.pdf.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable
DRAM alternative. In ISCA, 2009.

[16] D. E. Lowell and P. M. Chen. Free transactions with
Rio Vista. Operating Systems Review, 31, 1997.

[17] S. Nath and P. B. Gibbons. Online maintenance of
very large random samples on flash storage. The
VLDB Journal, 19(1), 2010.

[18] W. T. Ng and P. M. Chen. Integrating reliable
memory in databases. The VLDB Journal, 7(3), 1998.

[19] PCM-DB. http://www.pittsburgh.intel-
research.net/projects/hi-spade/pcm-db/.

[20] PTLsim. http://www.ptlsim.org/.

[21] M. K. Qureshi, J. P. Karidis, M. Franceschini,
V. Srinivasan, L. Lastras, and B. Abali. Enhancing
lifetime and security of PCM-based main memory
with start-gap wear leveling. In MICRO, 2009.

[22] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system using
phase-change memory technology. In ISCA, 2009.

[23] J. Rao and K. A. Ross. Making B+-trees cache
conscious in main memory. In SIGMOD, 2000.

[24] Samsung. Samsung ships industry’s first multi-chip
package with a PRAM chip for handsets. http://
www.samsung.com/us/business/semiconductor/
newsView.do?news id=1149, April 2010.

[25] S. E. Schechter, G. H. Loh, K. Straus, and D. Burger.
Use ECP, not ECC, for hard failures in resistive
memories. In ISCA, 2010.

[26] N. H. Seong, D. H. Woo, and H.-H. S. Lee. Security
refresh: Prevent malicious wear-out and increase
durability for phase-change memory with dynamically
randomized address mapping. In ISCA, 2010.

[27] A. Shatdal, C. Kant, and J. F. Naughton. Cache
conscious algorithms for relational query processing.
In VLDB, 1994.

[28] H.-W. Tseng, H.-L. Li, and C.-L. Yang. An
energy-efficient virtual memory system with flash
memory as the secondary storage. In Int’l Symp. on
Low Power Electronics and Design (ISPLED), 2006.

[29] A.-I. Wang, P. L. Reiher, G. J. Popek, and G. H.
Kuenning. Conquest: Better performance through a
disk/persistent-RAM hybrid file system. In USENIX
Annual Technical Conference, 2002.

[30] M. Wu and W. Zwaenepoel. eNVy: a non-volatile,
main memory storage system. In ASPLOS, 1994.

[31] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee,
and B.-G. Yu. A low power phase-change random
access memory using a data-comparison write scheme.
In IEEE ISCAS, 2007.

[32] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable
and energy efficient main memory using phase change
memory technology. In ISCA, 2009.

