
RACE: Real-time Applications over Cloud-Edge

Badrish Chandramouli1, Joris Claessens2, Suman Nath1, Ivo Santos2, Wenchao Zhou3∗

1Microsoft Research, Redmond 2Microsoft Research, Aachen 3University of Pennsylvania
{badrishc, jorisc, sumann, ivosan}@microsoft.com, wenchaoz@cis.upenn.edu

ABSTRACT

The Cloud-Edge topology — where multiple smart edge de-
vices such as phones are connected to one another via the
Cloud — is becoming ubiquitous. We demonstrate RACE, a
novel framework and system for specifying and efficiently ex-
ecuting distributed real-time applications in the Cloud-Edge
topology. RACE uses LINQ for StreamInsight to succinctly
express a diverse suite of useful real-time applications. Fur-
ther, it exploits the processing power of edge devices and the
Cloud to partition and execute such queries in a distributed
manner. RACE features a novel cost-based optimizer that
efficiently finds the optimal placement, minimizing global
communication cost while handling multi-level join queries
and asymmetric network links.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications

Keywords

Cloud, Smartphones, Query, Optimization, Streams

1. INTRODUCTION
The Cloud-Edge topology — where multiple smart edge

devices such as phones are connected to one another via the
Cloud — is becoming ubiquitous. Moreover, many of these
edge devices are equipped with sensors producing continuous
streams of data such as user’s GPS location, speed, current
activity, device’s battery usage, etc. All these have fueled
an increasing interest in distributed Cloud-Edge applications

that provide various services (e.g., notifications or recom-
mendation to users) based on real-time feeds collected from
a large number of edge-devices. An example architecture of
such services is show in Figure 1.

In this paper, we focus on a class of Cloud-Edge applica-
tions that need to continuously correlate or join data from

∗Work performed during internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

App. Spec.

����������	��
��Service Provider

Figure 1: The Cloud-Edge topology.

multiple edge devices. A canonical example is a friend-

finder application (e.g., Loopt app on iPhone, Android, and
Windows Phone) that notifies a user whenever any of her
friends are near her current location. Enabling this requires
correlating real-time locations from users’ smartphones as
well as slowly changing reference data such as a social net-
work (defining the friend relationship). Other examples
of such applications include location-aware coupon services
(e.g., GeoQpons on Android and iPhone) that notify a user
when she is close to business offering coupons that she might
like, mobile multiplayer games (e.g., iMobsters on Android)
that need to monitor and react on players’ mutual interac-
tions and status, and data-center monitoring applications
that provide real-time analytics over resource utilization of
servers.

In this paper, we describe RACE, a new framework and
system for specifying and efficiently executing distributed
real-time Cloud-Edge applications. In RACE, the core appli-
cation logic of such applications is abstracted as continuous
queries running over streaming data from a large number of
edge-devices and the Cloud. RACE allows application devel-
opers to use LINQ [6] to succinctly express a diverse suite of
useful real-time applications. RACE then exploits the pro-
cessing power of edge devices and the Cloud to partition and
execute such queries in a distributed manner.

At the core of RACE is a novel cost-based optimizer that
efficiently finds the optimal placement of various operators
in the Cloud and various available edge-devices such that
the global communication cost (hence the energy overhead
of edge-devices) is minimized. Unlike many other previous
works on distributed query optimizations (see [3] for a sur-
vey), RACE considers optimizing multiple queries together
with different data size/rates across devices and possibly
asymmetric communication cost. A few recent multi-query
optimization works [2, 4] can handle these aspects; compared
to them, the optimization algorithm in RACE is several or-
ders of magnitude faster (a few seconds, compared to a few
hours) for large numbers of devices, which makes RACE suit-
able for real-time applications.

RACE achieves its query optimization efficiency by ex-
ploiting the specific “star” topology of Could-Edge systems,

Specification

Optimization Adaptivity

LINQ
Parse

DSMS

Place

Ref.

Data

DSMS

DSMS

DSMS

DSMS

Generate

Query

Graph

Optimize

Stats.

Architecture

…DSMS DSMS DSMS

Figure 2: RACE architecture.

shown in Figure 1. We show that for such a topology, lo-
cally optimal operator placement solutions obtained by each
device independently using a very simple greedy algorithm
yields a globally optimal placement solution. This powerful
result enables RACE to find a provably optimal placement
solution in a very efficient, scalable, and possibly distributed
way, without using expensive centralized algorithms such as
graph partitioning (as is done in [4]) or linear programming
(as is done in [2]).

In the rest of the paper, we describe the architecture of
RACE, various use cases, and two concrete applications that
we will demonstrate.

2. RACE: SYSTEM DETAILS
Figure 2 shows the overall architecture of RACE. Applica-

tion developers submit their application logic declaratively
using LINQ for StreamInsight. RACE parses the query and
generates a larger query graph by materializing slowly chang-
ing “reference” data streams (e.g., social network streams)
where possible. The optimizer uses collected statistics to
find an optimal placement for each node in the query graph.

We have implemented the RACE platform to work with the
commercially available Microsoft StreamInsight data stream

management system (DSMS). The RACE optimizer (written
in C#) runs in the Cloud and uses a control plane to de-
ploy the generated query fragments and associated metadata
such as event types and adapter definitions on StreamInsight
engines running at the Cloud end as well on individual edge
devices. Our edge application is written using Silverlight for
Windows Phone (and hence can be deployed on Windows
Phones). A prototype lightweight version of the StreamIn-
sight engine runs inside the Silverlight client application on
phones, and executes query fragments deployed by RACE.
Events flow between devices via the Cloud using a separate
data plane. After placement, future reoptimization may be
triggered at the server in order to modify the optimal place-
ment based on current statistics.

2.1 Application Specification
We observe that Cloud-Edge applications are fundamen-

tally temporal in nature — they operate over temporal data
(e.g., locations with timestamps) and the application logic
is also usually temporal (e.g., notify me if my friends vis-
ited this location in the last 5 minutes). Thus, RACE uses
a temporal language, specifically LINQ for StreamInsight,
to express application logic. For example, the friend-finder
query above can be written using a two-way temporal join
query in LINQ, as shown in Figure 3.

The final output is a stream of friend pairs (User1, User2)

var query0 = from e1 in location
from e2 in socialNetwork

where e1.UserId==e2.UserId
select new { e1.UserId, e1.Latitude,

e1.Longitude, e2.FriendId };

var query1 = from e1 in query0
from e2 in location

where e1.FriendId == e2.UserId &&
Distance(e1.Latitude, e1.Longitude,

e2.Latitude, e2.Longitude) < THRESHOLD
select new { User1 = e1.UserId, User2 = e2.UserId };

Figure 3: Specification of friend-finder application.

who are close to one another at any given point of time.
LINQ is convenient and can be used either using a stan-
dalone GUI (LINQPad [5]) or Visual Studio. The query
specification above defines the high-level logic of the query
as temporal joins, and references the schemas of the location
stream and socialNetwork stream in a network-topology-
agnostic manner.

As another example, suppose we want to find friends who
visited our location (say restaurant) within the last week. To
specify this, we simply replace the location input in query1

with location.AlterEventDuration(TimeSpan.FromDays(7)).
This extends the “lifetime” of location events to 7 days,
allowing the join to consider events from friends within the
last week. Our specification is declarative, succinct, and
flexible, and can handle a broad range of target applications
(Section 4.1 has more examples).

2.2 From Specification to Query Graph
Given a query, RACE analyzes the input stream charac-

teristics and query predicates in order to generate a query

graph, that consists of stream operators connected together
by queues. Continuing the friend-finder example, consider
a simple stream representing a social network with three
users (A, B, and C). The social network is shown in Fig-
ure 4, while Figure 5 shows the corresponding expanded
query plan obtained from the original query specification us-
ing query rewriting rules. Note that with millions of edges
in the social network, a query graph could be very large in
practice.

C A B

Figure 4: Social network with three users.

GPS GPSSN GPS-A GPS-BSNGPS-CSN

Figure 5: Query plan for friend-finder.

2.3 Optimal Operator Placement
Every edge in the query graph is associated with an event

rate (in events/sec) for the data stream between the cor-
responding source and destination operators. Given such a
query graph, RACE decides where to place each each oper-
ator, with a goal of minimizing total network traffic. The
simple scheme of placing all operators at the Cloud, while

simple, can be very inefficient. For general communication
graphs, operator placement is NP-Hard [2, 4]. Previous
work has shown how to address this in polynomial time for
tree-like communication networks (by using a min-cut al-
gorithm) [4]. Our experimental results show that existing
algorithms do not scale to graph sizes observed in Cloud-
Edge apps. For example, for a friend-finder app with 20, 000
users, the min-cut based algorithm in [4] takes 4.75 hours.
This is clearly impractical for (near) real-time applications
with dynamic data rates and churn.

RACE solves this issue by exploiting the star topology un-
derlying Cloud-Edge apps (see Figure 1). In such a topology,
each edge device is connected to the Cloud only. Thus, com-
munication between two edge devices happen through the
Cloud. This reflects the dominant form of communication
between mobile-phones today. A major research contribu-
tion of the RACE project is the development of new algo-
rithms to efficently find the optimal placement for a large
query graph. The core intuition is that we can leverage the
special Cloud-Edge topology in order to find the globally
optimal placement efficiently (the above-mentioned exam-
ple with 20, 000 users takes 3.2 seconds to find the optimal
placement). We refer interested readers to our research pa-
per [1] for the technical details, and instead give a brief
example below based on the friend-finder application.

Consider the join query graph for the friend-finder ap-
plication (see Figure 5) and assume for simplicity that each
user has a fixed location stream rate with respect to all their
friends (we also ignore the social network streams for sim-
plicity). Instead of trying to place every join operator, we
instead consider the alternative problem of deciding whether
to upload (U) or not-upload (NU) each edge data stream.
We process each network link between a user (say A) and
the Cloud, and compute the optimal U/NU decision for user
A and his friends (B and C). It can be seen that the local
decision for A made when considering the network link (A,
cloud) will be compatible with the local decision made for
A when considering the network links (B, cloud) and (C,
cloud). Thus, we can conclude that such the U/NU assign-
ment is globally optimal (it is easy to derive the operator
placement from a given set of U/NU decisions).

Interestingly, the above result holds even for practical in-
stances of asymmetric networks with d ≥ u, where d and
u represent the per-message download and upload costs re-
spectively. Further, for d > u/2, we can show that the op-
timal U/NU decisions can still be found in linear time even
if the local decisions are not compatible. Further, we find
that the unrealistically skewed case with d = 0 is provably
NP-Hard; see [1] for details. Our techniques can find the
optimal placement for multi-way join queries while support-
ing asymmetric networks, sharing of intermediate results, as
well as cases where data sampling rates for a source stream
are different for each join operator with that stream as input
(e.g., when we need to correlate location readings at differ-
ent rates with friends at varying distances). Further, we can
handle general query graphs of black-box operators.

Our optimal operator placement strategies are orders-of-
magnitude more efficient than current approaches for opti-
mal operator placement, such as those proposed by Li et
al. [4] and Kalyvianaki et al. [2]. This allows us to perform
periodic reoptimization during runtime, adjusting query lo-
cations to optimize costs based on current data rates and
statistics. Experiments with real data show that finding the

optimal placement is important — the optimal placement
for friend-finder on a real dataset based on a social network
sample of more than 900K users from Facebook in associa-
tion with real GPS trace data shows that our placements can
be up to 7× better than uploading all data to the Cloud.

3. RACE APPLICATIONS
We now give a few example applications that can be ex-

pressed as continuous queries in RACE. We demonstrate the
first two of these applications.

I Pay-as-you-drive Insurance. This application runs
on a smartphone and monitors a user’s driving behavior by
accessing relevant car data (e.g., speed, acceleration, and
braking) from his car’s dashboard via Bluetooth. The data
is then continuously joined with reference data such as road
traffic, weather conditions, and driving behavior of near-by
drivers to determine whether the user is a safe or an aggres-
sive driver. The information may be used to determine the
user’s insurance premium (e.g., he gets a discount if he is a
safe driver) and to alert him if he is driving too aggressively.
The reference data may come either from the Cloud or from
one or more roadside sensors.

I Friend-Finder. As mentioned earlier, this application
notifies a user whenever any of his friends is near his loca-
tion. The application finds all the user pairs (User1, User2)

that satisfy the conditions: 1) User2 is a friend of User1 and
2) the two users have been geographically close to each other
within the last 5 minutes. There are two input sources to
the query representing the core application logic, namely
the GPS location streams reported by the edge devices, and
the social network data. The GPS locations are actively
collected at runtime, whereas the social network data is rel-
atively stable and is readily available at the Cloud.

I Geo-Coupons. This application delivers coupons to a
user’s mobile phone whenever he is within a short distance
(e.g., one mile) of a business providing coupons. The set of
business and coupons can be selected based on the user’s or
his friends’ interests and recent activities. For example, the
user may receive a coupon for a theater playing a movie that
his friends have watched in the previous week. The query
capturing the core logic of the application runs on these data
sources: users’ location streams, social network, and users’
interests and activities.

I Taxi Fleet Management. This application runs over
a number of edge devices representing taxis in a city and
provides useful analytics (e.g., number of available taxis in
an area) to the taxi company as well as to other taxis. For
example, the taxi company or individual taxis can see (in
real-time) how many taxis are available in various parts of
the city. The application also serves customers. A cus-
tomer looking for a taxi can see how many available taxis
are around his location. Taxis also see the count and loca-
tion of customers looking for taxis.

4. DEMO WALKTHROUGH
We demonstrate various aspects of RACE with the first

two applications mentioned in the previous section.

4.1 Application Specification
We show how to specify the applications with continuous

queries on RACE. The pay-as-you-drive insurance applica-

var query0 = from j in carData
from r in roadSensorsAndCarConnections

where j.CarId == r.CarId
select new
{ CarId = j.CarId, Jolt = j.Jolt, SensorId = r.SensorId };

var query1 = from cs in query0

from t in trafficData
where cs.SensorId == t.SensorId

select new {cs.CarId, DriverIndex =
F(cs.Jolt, t.TrafficCondition)};

Figure 6: Specification of pay-as-you-drive insurance

application.

Figure 7: Car simulator used in the demo.

tion can be specified as follows (Figure 6): query0 joins car’s
driving information and a database of sensors to determine
the jolt (or jerk, the rate of change of acceleration) of the
car and the id of the sensor providing reference data for the
car. query1 joins the output of query0 with sensor data to
determine the driver’s safety index as a function F of jolt
and traffic condition. Note that the query can be trivially
modified to compute safety index based on other driving pa-
rameters (such as speed) and sensor data (such as average
speed of near-by drivers). The query for the friend-finder
application is shown earlier in Figure 3 (Section 2.1).

4.2 Input Data
To make both the applications realistic in our demonstra-

tion, we provide continuous location streams of a large num-
ber of edge devices to simulate users’ movement. In addi-
tion, we provide one car simulator that users can interact
with and control various movement parameters of one edge
device (Figure 7). These parameters may affect the optimal
execution plan, which we describe next.

4.3 Optimal Execution
We demonstrate the effectiveness of RACE’s placement al-

gorithms with three progressively complicated scenarios: (1)
the pay-as-you-drive insurance application, with all compu-
tation being done at the Cloud; (2) the pay-as-you-drive ap-
plication, with RACE’s optimized operator placement; and
(3) the friend-finder application, with RACE’s optimized op-
erator placement. Transitioning from (1) to (2) demon-
strates the power of RACE’s placement algorithm (which
may push computation to edge devices). Transitioning from
(2) to (3) shows a more complex placement decision—in (2),
each user’s data is joined with only one sensor, while in (3)
each user’s data is joined with many friends.

We provide a client application running on the Windows
Phone platform and a server dashboard. The client applica-
tion delivers the final outcome of the queries to the user. For

(a) (b) (c)

Figure 8: Windows Phone client for the pay-as-you-

drive application.

Figure 9: Server-side dashboard for RACE.

the pay-as-you-drive application, it shows the current raw
data collected from the device (Figure 7(a)) and the global
DriverIndex of the user (Figure 7(b)). For the friend-finder
application, it will show a list of near-by friends. It will also
show the queries running on the device and their bandwidth
consumption on the device (Figure 7(c)).

The server-side dashboard shows the locations of various
cars or users on a map and statistics such as the overall net-
work bandwidth consumption of the application (with and
without RACE optimizations). Figure 9 shows a screenshot.

Acknowledgements. We would like to thank Louis La-
tour, Eldar Akchurin, Marcel Tilly, and Ilker Dogan for their
help in building the demo and providing valuable feedback.

5. REFERENCES
[1] B. Chandramouli, S. Nath, and W. Zhou. Efficient

declarative support for distributed apps over smart
devices. Technical report, Microsoft Research.

[2] E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn,
and P. Pietzuch. SQPR: Stream query planning with
reuse. In Proc. ICDE, 2011.

[3] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 2000.

[4] J. Li, A. Deshpande, and S. Khuller. Minimizing
communication cost in distributed multi-query
processing. In Proc. ICDE, 2009.

[5] LINQPad. http://linqpad.net/.

[6] The LINQ Project. http://tinyurl.com/avs7wo.

	Introduction
	RACE: System Details
	Application Specification
	From Specification to Query Graph
	Optimal Operator Placement

	RACE Applications
	Demo Walkthrough
	Application Specification
	Input Data
	Optimal Execution

	References

