
Morpheus: Towards Automated SLOs for Enterprise Clusters

Sangeetha Abdu Jyothi m,u Carlo Curinom Ishai Menachem

Shravan Matthur Narayanamurthym Alexey Tumanovm,c Jonathan Yanivt

Ruslan Mavlyutovm, f Íñigo Goirim Subru Krishnanm Janardhan Kulkarnim

Sriram Raom

m Microsoft, u University of Illinois at Urbana–Champaign, c Carnegie Mellon University
t Technion-Israel Institute of Technology, f University of Fribourg

Abstract
Modern resource management frameworks for large-
scale analytics leave unresolved the problematic ten-
sion between high cluster utilization and job’s perfor-
mance predictability—respectively coveted by operators
and users. We address this in Morpheus, a new sys-
tem that: 1) codifies implicit user expectations as ex-
plicit Service Level Objectives (SLOs), inferred from his-
torical data, 2) enforces SLOs using novel scheduling
techniques that isolate jobs from sharing-induced perfor-
mance variability, and 3) mitigates inherent performance
variance (e.g., due to failures) by means of dynamic re-
provisioning of jobs. We validate these ideas against pro-
duction traces from a 50k node cluster, and show that
Morpheus can lower the number of deadline violations by
5× to 13×, while retaining cluster-utilization, and lower-
ing cluster footprint by 14% to 28%. We demonstrate the
scalability and practicality of our implementation by de-
ploying Morpheus on a 2700-node cluster and running it
against production-derived workloads.

1 Introduction
Commercial enterprises ranging from Fortune-500 com-
panies to venture-capital funded startups are increas-
ingly relying on multi-tenanted clusters for running their
business-critical data analytics jobs. These jobs comprise
of multiple tasks that are run on different cluster nodes,
where the unit of per-task resource allocation is a con-
tainer (i.e, a bundle of resources such as CPU, RAM and
disk I/O) on an individual machine. From an analysis
of large-scale production workloads, we observe signifi-
cant variance in job runtimes, which sometimes results in
missed deadlines and negative business impact. This is
perceived by users as an unpredictable execution experi-
ence, and it accounts for 25% of (resource-provisioning
related) user escalations in Microsoft big-data clusters.

Unpredictability comes from several sources, which for
discussion purposes, we roughly group as follows:

• Sharing-induced – performance variability caused
by inconsistent allocations of resources across job
runs—a scheduling policy artifact.

• Inherent – performance variability due to changes in
the job input (size, skew, availability), source code
tweaks, failures, and hardware churn—this is en-
demic even in dedicated and lightly used clusters.

Unpredictability is most noticeable to users who sub-
mit periodic jobs (i.e., scheduled runs of the same job on
newly arriving data). Their recurrent nature prompts users
to form an expectation on jobs’ runtime performance as
well as react to any deviation from it, particularly, if the
job is business-critical (i.e., a production job).

Unfortunately, widely deployed resource managers [9,
27, 51, 55] provide limited mechanisms (e.g., fairness
weights, priorities, job killing) for users to cope with un-
predictability of such jobs. Given these basic tools, users
resort to a combination of ad-hoc tricks, often pivoting
around conservative over-provisioning for important pro-
duction jobs. These coarse compensating actions are man-
ual and inherently error-prone. Worse, they may adversely
impact cluster utilization—a key metric for cluster opera-
tors. Owing to the substantial costs involved in building/-
operating large-scale clusters, operators seek good return
on investment (ROI) by maximizing utilization.

Divergent predictability and utilization requirements
are poorly handled by existing systems. This is taxing
and leads to tension between users and operators.

An ideal resource management infrastructure would
provide predictable execution as a core primitive, while
achieving high cluster utilization. This is a worthwhile
infrastructure to build, particularly, because periodic, pro-
duction jobs make up the majority of cluster workloads,
as reported by [43] and as we observe in §2.

In this paper, we move the state of the art towards this
ideal, by proposing a system called Morpheus. Building
Morpheus poses several interesting challenges such as,
automatically: 1) capturing user predictability expecta-
tions, 2) controlling sharing-induced unpredictability, and
3) coping with inherent unpredictability. We elaborate on
these challenges next.

Inferring SLOs and modeling job resource demands.
Our first challenge is to formalize the implicit user pre-
dictability expectation in an explicit form that is action-
able for the underlying resource management infrastruc-
ture. We refer to the resulting characterization as an (in-
ferred) Service Level Objective (SLO). We focus on com-
pletion time SLOs or deadlines. The next step consists of
quantifying the amount of resources that must be provi-
sioned during the execution of the job to meet the SLO
without wastefully over-provisioning resources. Natu-
rally, the precise resource requirements of each job de-
pend on numerous factors such as function being com-
puted, the degree of parallelism, data size and skew.

The above is hard to accomplish for arbitrary jobs for
two reasons: 1) target SLOs are generally unknown to
operators, and often hard to define even for the users—
see §2, and 2) automatic provisioning is a known hard
problem even when fixing the application framework [52,
15, 26, 19]. However, the periodic nature of our work-
load makes this problem tractable by means of history-
driven approaches. We tackle this problem using a com-
bination of techniques: First, we statistically derive a
target SLO for a periodic job by analyzing all inter-job
data dependencies and ingress/egress operations (§ 4).
Second, we leverage telemetry of historical runs to de-
rive a job resource model—a time-varying skyline of re-
source demands. We employ a Linear Programming for-
mulation, that explicitly controls the penalty of over/un-
der provisioning—balancing predictability and utilization
(§5). Programmatically deriving SLOs and job resource
model enables a tuning-free user experience, where users
can simply sign-off on the proposed contract. Users may
alternatively override any parameter of the inferred SLO
and the job resource model, which becomes binding if ac-
cepted by our system.

Eliminating sharing-induced unpredictability. Our
second challenge is to enforce SLOs while retaining high-
utilization in a shared environment. This consists of
controlling performance variance with minimal resource
over-provisioning. As noted above, sharing-induced un-
predictability is a scheduling artifact. Accordingly, we
structurally eliminate it by leveraging the notion of recur-
ring reservation, a scheduling construct that isolates peri-
odic production jobs from the noisiness of sharing. A key

property of recurring reservations is that once a periodic
job is admitted each of its instantiations will have a pre-
dictable resource allocation. High-utilization is achieved
by means of a new online, planning algorithm (§ 6). The
algorithm leverages jobs’ flexibility (e.g., deadline slack)
to pack reservations tightly.

Mitigating inherent unpredictability. Our last challenge
is dealing with inherent performance variance (i.e., ex-
ogenous factors, such as task failures, code/data changes,
etc.). We do this by dynamically re-provisioning the cur-
rent instance of a reservation, in response to job resource
consumption, in relationship to the SLO. This compen-
sates for short-term drifts, while continuous retraining of
our SLO and job resource model extractors captures long-
term effects. This problem is in spirit similar to what was
proposed in Jockey [19], as we discuss in §7.

We emphasize that all of the above techniques are
framework-independent—this is key for our production
clusters as they support multiple application frameworks.

Experimental validation. We validate our design by im-
plementing Morpheus atop of Hadoop/YARN [51] (§8).
We then perform several faithful simulations with traces
of a production cluster with over 50k nodes, and show
that the SLOs we derived are representative of the job’s
needs. The combination of tight job provisioning, reser-
vation packing, and dynamic reprovisioning allows us to
achieve: 5× to 13× reduction in potential SLO viola-
tions (with respect to user-defined static provisioning),
and identical cluster utilization. All while, our packing al-
gorithms leverage the flexibility in target SLOs to smooth
the provisioning load over time, and achieve better ROI,
by reducing cluster footprint by 14% to 28%. We con-
clude by deploying Morpheus on a 2700-node cluster, and
performing stress-tests with a production-derived work-
load. This confirms both the scalability of our design, and
the practicality of our implementation (§ 9). We intend to
release components of Morpheus as open-source and the
progress can be tracked at [2].

2 Motivation

In the early phases of our project, we set out to confir-
m/deny our informal intuitions of how big-data clusters
are operated and used. We did so by analyzing four data
sources: 1) execution logs of millions of jobs running on
clusters with more than 50k nodes, 2) infrastructure de-
ployment/upgrade logs, 3) interviews, discussion threads,
and escalation tickets from users, operators and decision
makers, and 4) targeted micro-benchmarks. We summa-
rize below the main findings of our analysis.

0%

20%

40%

60%

80%

100%

prod adhoc

ES
CA

LA
TI
O
N
S(
%
)

low

medium

high

extreme

SEVERITY
A) B) C)

Figure 1: Analysis of user escalations and recurrent behaviors of production workloads.

2.1 Cluster workloads
Proper execution of production jobs is crucial. Produc-
tion jobs represent over 75% of our workload and a simi-
lar percentage of the provisioned capacity—the rest being
dedicated to ad-hoc jobs (10-20%) and ready to handle
growth/failures (5-10%). All unassigned capacity is redis-
tributed fairly to speed up jobs. As expected, users care
mostly about proper execution of production jobs. Fig. 1a
shows that over 90% of all escalations relate to production
jobs, and this percentage grows to 100% for high/extreme
severity escalations.
Predictability trumps fairness. Further analysis of the
escalations of Fig. 1a and of discussion threads, indicates
that users are 120× more likely to complain about the
performance (un)predictability (25% of all job/resource-
management escalations) than about fairness (< 0.2%),
despite the fact that our system does not enforce fairness
strictly. This outcome may be expected, as customers can-
not observe how “fair” allocations really are.
Production jobs are often periodic. Over 60% of the
jobs in our larger/busier clusters are recurrent. Most
of these recurring jobs are production jobs operating on
continuously arriving data, hence are periodic in nature.
Fig. 1b shows the distribution of the period for periodic
jobs. Interestingly, most of the distribution mass is con-
tributed by a small number of natural values (e.g., once-
a-day, once-an-hour, etc.); this property will be useful to
our allocation mechanisms (§6). Fig. 1c provides further
evidence of recurrent behavior, by showing that job start
times are more densely distributed around the “start-of-
the-hour”. This confirms that most jobs are submitted au-
tomatically on a fixed schedule.

The above evidence confirms that the most important
portion of our workloads is strongly recurrent. This al-
lows for planning the cluster agenda, without being overly
conservative in the resource provisioning of jobs.

2.2 Predictability challenges
Manual tuning of job allocation is hard. Fig. 2a shows
the distribution of the ratio between the total amount of
resources provisioned by the job’s owner and the job’s

actual resource usage (both comparing peak parallelism
and area). The wide range of over/under-allocation in-
dicates that it is very hard for users (or they lack incen-
tives) to optimally provision resources for their jobs. We
further validate this hunch through a user study in [15].
The graphs shows that 75% of jobs are over-provisioned
(even at their peak), with 20% of them over 10× over-
provisioned. This is likely due to users statically setting
their provisioning for a periodic job. We confirm this, by
observing that in one-month period over 80% of periodic
jobs had no changes in their resource provisioning. Large
under-provisioned jobs partially offset the impact of over-
provisioning on cluster utilization.
Sources of performance variance. It is hard to precisely
establish the sources of variance from the production logs
we have. We observe a small but positive correlation
(0.16) between the amount of sharing (above provisioned
resources) and job runtime variance. This indicates that
increased sharing affects runtime variance.

We investigate further the roles of sharing-induced
and inherent performance variance by means of a sim-
ple micro-benchmark. Fig. 2b shows the normalized run-
time of 5 TPC-H queries1. We consider two configura-
tions one with constrained parallelism (500 containers),
and one with unconstrained parallelism (>2000 contain-
ers); each container is a bundle of <1core,8GB RAM>.
Each query was run 100 times in each configuration on an
empty cluster at 10TB scale. The graph shows that even
when removing common sources of inherent variability
(data availability, failures, network congestion), runtimes
remain unpredictable (e.g., due to stragglers, §7).

By analyzing these experiments and observing produc-
tion environments, we conclude that: 1) history-based
approaches can model well the “normal” behavior of a
query (small box), 2) handling outliers (as in the long
whiskers) without wasting resources requires a dynamic
component that performs reprovisioning online, and 3)
while each source of variance may be addressed with an
ad-hoc solution, providing a general-purpose line of de-
fense is paramount— see §7 for our solution.

1Box shows [25th,75th] percentiles, and whiskers shows [min,max].

0

20

40

60

80

100

120

4
/1

6
/1

8
/1

1
0

/1

1
2

/1

2
/1

4
/1

C
ap

ac
it

y
(%

)

SKU1 SKU2A) B) C)

Figure 2: A) Empirical CDF of provisioning vs. used resources, B) box-whisker plot of normalized runtime of TPC-H
queries running with 500 containers (left) and >2000 containers (right). C) cluster capacity of different machine types.

2.3 Changing conditions
Cluster conditions keep evolving—jobs may run on
different server types. We provide in Fig. 2c a measure
of hardware churn in our clusters. We refer to different
machines configurations as Stock Keeping Units (SKUs).
Over a period of a year, the ratio between number of ma-
chines of type SKU1 and type SKU2 changed from 80/20
to 55/45; the total number of nodes also kept changing
over that period. This is notable, because even seem-
ingly minor hardware differences can impact job runtime
significantly— e.g., 40% difference in runtime on SKU1
vs SKU2 for a Spark production job.
User scripts keep evolving. We perform an analysis of
the versioning of user scripts/UDFs. We remove all sim-
ple parameterizations that naturally change with every in-
stantiation, and then construct a fuzzy match of the code
structure. Within one-month of trace data, we detect that
15-20% of periodic jobs had at least one large code delta
(more than 10% code difference), and over 50% had at
least one small delta (any change that breaks MD5 of the
parameter-stripped code). Hence, even an optimal static
tuning is likely going to drift out of optimality over time.

Motivated by all of the above evidence, we focus on
building a resource management substrate that provides
predictable execution as a core primitive.

3 Overview of Morpheus
Morpheus is a system that continuously observes and
learns as periodic jobs execute over time. The findings are
used to economically reserve resources for the job ahead
of job execution, and dynamically adapt to changing con-
ditions at runtime. To give an informal sense of the key
functionalities in Morpheus, we start our overview by fol-
lowing a typical life-cycle of a periodic job (JobX) as it is
governed by Morpheus (§3.1). Next, we describe the core
subsystems (§3.2). Fig. 3 provides a logical view of the
architecture, and “zooms in” on a particular job.

3.1 “Life” of a periodic job

With reference to Fig. 3, a typical periodic jobs goes
through the following stages.

1. The user periodically submits JobX with manually pro-
visioned resources. In the meantime, the underlying
infrastructure captures:

(a) Data-dependencies and ingress/egress operations
in the Provenance Graph (PG).

(b) Resource utilization of each run (marked as the
R1-R4 skylines in Fig. 3) in a Telemetry-History
(TH) database.

2. The SLO Inference performs an offline analysis of the
successful runs of JobX:

(a) From the PG it derives a deadline d—the SLO.
(b) From the TH, it derives a model of the job re-

source demand over time, R∗. We refer to R∗ as
the job resource model

3. The user signs off (or optionally overrides) the
automatically-generated SLO and job resource model.

4. Morpheus enforces SLOs via recurring reservations:

(a) Adds a recurring reservation for JobX into the
cluster agenda—this sets aside resources over
time based on the job resource model R∗.

(b) New instances of JobX run within the recurring
reservation (dedicated resources).

5. The Dynamic Reprovisioning component monitors the
job progress online, and increases/decreases the reser-
vation, to mitigate inherent execution variability.

6. Morpheus constantly feeds back into Step 2 the PG
and telemetry information of the new runs for contin-
uous learning and refinement of the SLO and the job
resource model.

Provenance Graph

j

...

...

...

.

.

.

.

.

.

a d time

R3

Reservation
Placement

Recurring Reservation

 p

R

s d

 p

R

s d

 p

R*

a d

User sign-off/override

Automatic Inference

Reservation
Resizing

Telemetry history

 p

Live Job Resource Usage

Dynamic Reprovisioning

Extractors
Target
SLOs

Job
Resource

Model
R1 R2 R4

5
1a

1b

2a

2b

3

4a 4b

6

Figure 3: Conceptual view of Morpheus’ architecture. Numbers/letters match the “Life” of a periodic job (§3.1).

3.2 Key components
We next give a brief overview of the different compo-
nents in Morpheus, highlighting the different timescales
in which they operate. Details follow in §4–§7. We start
our description with the automatic inference module,
which consists of two sub-components:
Extractor of target SLOs (§4). This sub-component op-
erates on a Provenance Graph (PG). This is a graph cap-
turing all inter-job data dependencies, as well as all in-
gress/egress operations. The SLO extractor leverages the
precise timing information stored in the PG to statistically
derive a deadline for the periodic job—as time at which
downstream consumers read a job’s output2.
Job resource model (§5). This sub-component takes as
input detailed telemetry information on job runs. The
information includes time-series of resource utilization
(“skyline”)—the amount of resources (represented as con-
tainers) used by the job at certain time granularity, typi-
cally one minute. Based on time-series of multiple runs,
the sub-component constructs a tight envelope R∗ around
the “typical” behavior of the job. These time-series are
also used to derive the period, P.

The automatic inference module outputs the SLO and
the job resource model in the form of a recurring reserva-
tion request for a newly observed periodic jobs, and con-
tinuously refines existing ones on slow time scale (e.g.,
daily). The inferred SLO and job resource model feed the
resource reservation component automatically, yet Mor-
pheus also allows for user SLO and job resource model
sign-off/override. More specifically, the job owners are
given three options: 1) sign-off on the proposed SLO and
job resource model as-is, 2) override any of the param-
eters based on further knowledge (e.g., the job will run
on 10× more data starting tomorrow), or simply 3) reject
the use of SLOs, in which case the job runs with standard

2Note that a small number of periodic jobs exhibit latency-sensitive
behaviors (output consumed immediately). Our system handles those as
a special case of a deadline with no slack.

fair-queueing semantics [51]. By signing off a recurring
reservation the user approves the SLO, the initial job de-
mand skyline, as well as it accepts a bounded (and config-
urable3) amount of runtime reprovisioning—more below.
Reservation Placement (§6). The SLO and the job re-
source model are expressed in terms of a recurring reser-
vation request to a Reservation Placement mechanism.
Morpheus implementation (§8) builds upon YARN’s
reservation system [51, 13], which we extend to accom-
modate periodic reservations. The allocation problem it-
self poses a substantial algorithmic challenge, as the goal
is to “pack” efficiently online arriving jobs with different
periods and arbitrary skylines. To address this challenge,
we design a novel online packing algorithm specialized
for periodic jobs. The algorithm exploits the jobs’ flexi-
bility (e.g., deadline slack) to compactly pack them, which
leaves enough capacity for ad-hoc jobs. Our algorithm is
incremental as it places new reservation requests, without
modifying the allocation plan for other jobs.
Dynamic Reprovisioning (§7). Naturally, any tight and
static capacity reservation cannot perfectly accommo-
date all job instances. To cope with dynamic variabil-
ity in job execution (or “inherent unpredictability”), this
component continuously monitors the rate of progress
of the job with respect to the amount of reservation
consumed. If progress appears slower/faster than ex-
pected, the component automatically adjusts the reserva-
tion, by tweaking the resources provisioned for this reser-
vation. Notably, such black-box approach is framework-
independent, which is key given the large amount of
frameworks that run in our clusters.

3.3 Current limitations
Before we fully describe Morpheus, we briefly highlight
some limitations of our system.
Control over globally-shared resources. Morpheus re-
lies on the underlying resource management infrastructure

3This is currently a system-wide parameter, but it could be easily
evolved to be a per-job parameter if demanded by customers.

(Apache Hadoop/YARN in our current implementation)
to enforce its decisions. As such, Morpheus can only en-
force container-level resources (such as CPU/Memory),
but lacks control over globally-shared resources (e.g.,
bandwidth on switches, DNS server). Resulting runtime
variability is coped with via dynamic reprovisioning (§7).
Support of non-periodic jobs. Morpheus supports both
periodic and non-periodic reservations, but does not au-
tomate the SLO and job resource model extraction for
never-seen-before jobs. Recent literature has shown that
job resource modeling can be performed a-priori (from
query and input data only) for a given application frame-
work [15, 42, 41, 56]—we discuss integration of these ap-
proaches in Morpheus in §8. SLO extraction for never-
seen-before jobs remains an open problem.
Automatic SLAs. Morpheus provides an important build-
ing blocks towards, but does not aim at delivering full-
fledged automated Service Level Agreements (SLAs). A
full SLA typically includes a specification of the eco-
nomic (or business) aspects of the provider-user agree-
ment [57]. For example, it may include the cost of unit of
resources, threshold of expected SLO attainment, legal/fi-
nancial consequences of missing the target SLO, limits of
how much dynamic-reprovisioning is allowed and charg-
ing consequences, etc. These aspects require further in-
vestigation beyond the scope of this paper.

4 SLO inference
In this section, we show how to automatically derive
SLOs for periodic jobs based on inter-job dependencies.

Based on interviews with cluster operators and users,
we isolate one observable metric which users care about:
job completion by a deadline. Specifically, analyzing the
escalation tickets, some users seem to form expectations
such as: “95% of job X runs should complete by 5pm”.
Other users are not able to specify a concrete deadline,
but do state that other teams rely on the output of their
job, and may need it in a timely manner. Overall, the
goal of Morpheus is to crystallize what users perceive as
“good-enough” job performance through automatically-
generated target SLO. Towards that end, Morpheus uti-
lizes a Provenance Graph (PG) as the main inference tool.
We next briefly describe the inference procedure.
Provenance Graph – reasoning about cluster data. The
PG gathers logs (petabytes daily across our production en-
vironments) capturing key aspects of job execution, file
system accesses, and system metrics. The PG is a seman-
tically rich and compact (few TBs) graph representation
of these raw logs. Specifically, nodes represent jobs and
files in our clusters, and edges capture read/write opera-
tions among jobs, files, and all ingress/egress operations

violations
Input − avail time (𝑇inAvail)
Job-start time (𝑇start)

Job-completion time (𝑇end)
Output − consumed time (𝑇outRead)

a j dj

Figure 4: A periodic job from production traces.

(modeled as virtual source/sink nodes). This represen-
tation gives us a unique vantage point with nearly per-
fect close-world knowledge of the meaningful events in
the cluster. The PG is constructed by scanning three sets
of logs: application logs, filesystem logs, frontend logs.
The application logs capture all job-related events such
as: start and completion times, failures, and a job’s in-
puts/outputs (this is part of the algebraic representation
of the user query). The filesystem logs provide metadata
information about files (size, nodes storing each block,
etc.). The frontend logs capture upload/download opera-
tions from the cluster (i.e., ingress/egress). A daily batch
job is used to parse the logs and by means of template-
matching extract both the structure and node/edge proper-
ties which are then efficiently stored in the PG [37].
Isolating periodic jobs. We group individual job in-
stances in a periodic job, if the templatized job names are
an exact match, if source-code signatures are an approxi-
mate match, and if submissions have a near-constant inter-
arrival time. The latter criterion is evaluated using the co-
efficient of variation (CV) measure of inter-arrival times.
CV is computed as the ratio of median absolute devia-
tion (MAD) (a robust estimate of dispersion) and central
value (median), namely CV = MAD

median ; we filter out jobs
with large CV. We derive the period Pj of a job j based on
the submission times—not subject to queuing delays.
Estimating SLOs from the PG. With reference to Fig. 4,
our goal is to derive estimates for the earliest start time a j
and the deadline d j for the job. To this end, we rely on four
random variables, in chronological order: TinAvail, time at
which job inputs are available (i.e., the time of last write to
any input); Tstart, time when the job starts execution; Tend,
time when the job completes execution; ToutRead, time at
which any job output is first read. All these times are de-
fined relative to the start of the current period TperiodStart

4.
We say that a job has an actionable deadline if its output

4The start time of the period of the ith job instance is given by
TperiodStart = AbsoluteReferenceTime+ i ·period, where AbsoluteRefer-
enceTime is the time of first event recorded for the periodic job.

is consumed at an approximately fixed time, relative to
the start of the period (e.g., everyday at 4pm), and if there
is non-trivial amount of slack between the job end and
the deadline. Formally this means imposing thresholds on
CV (ToutRead) and median

(
ToutRead−Tend

Tend−Tstart

)
. Finally, a j and

d j are derived5 as percentiles of the distributions of TinAvail
and ToutRead (e.g., 95th and 50th percentiles, respectively).
The vast majority of periodic jobs in our workloads have
actionable deadlines (§9), and will be offered an inferred
SLO. The remainder will continue running with manually
provisioned resources.

5 Job Resource Model
The second part of our inference module produces a re-
source allocation R∗j that has high fidelity to the actual
requirements of some periodic job j. In a nutshell, Mor-
pheus collects resource usage patterns of periodic jobs
over N j instances that have run in the past, and solves
an LP that “best fits” all patterns. Fig. 5 shows 4 runs
(R1-R4) of a TPC-H query that were used, along with
other runs, to generate R∗. The underlying optimization is
governed by a parameter α ∈ [0,1] which determines the
extent to which one wishes to reduce over-allocation of
resources (α = 1 hinting the maximal reduction of over-
allocation). The usage patterns are captured as a set of
skylines, one per run of a periodic job j. The resource
allocation R∗j is defined as the amount of resources to be
provisioned (e.g., number of containers) at any point in
time, for the successful execution of the different runs of
j. For ease of presentation, we omit the index j, yet recall
that all quantities below are for the same periodic job.

To derive the resource allocation, we first align the start
times of all the job runs (instances), and quantize time, so
that each quantized time-step corresponds to a fixed actual
duration (e.g., one minute). Formally, a skyline for the i-th
instance can be defined by the sequence {si,k}, the aver-
age number of containers used for each time-step k (k ∈
1, . . . ,K). Using a collection of sequences as input, the op-
timization problem outputs the vector s = (s1, . . .sK)—the
number of containers reserved at each time-step.

Our optimization objective is a cost function which is a
linear combination of two terms: One term which penal-
izes for “over-allocation” Ao(s), and another term which
penalizes for “under-allocation” Au(s), both illustrated in
Fig. 5; formally, we wish to minimize αAo(s) + (1−

5Note that, for a small fraction of the jobs, the periodicity of the job j
can be smaller than the one of its consumers (e.g., daily jobs rolled up in
a monthly report). In this case, we force a deadline based on the smallest
periodicity to ensure the resource provisioning load is distributed over
time (e.g., daily) instead of accumulated at the end (e.g., monthly). We
confirmed with users that this aligns with their intents.

Over−Allocation

Under−Allocation

0

500

1000

1500

2000

2500

0 60 120 180 240 300 360
Time in Seconds

C
on

ta
in

er
s

Provisioned − R*

Used − R1, R2, R3, R4

Figure 5: LP deriving a provisioned skyline R∗, from four
runs (R1-R4) of TPC-H Query12 (10TB scale).

α)Au(s). Next we describe these terms.
Over-allocation penalty. The over-allocation penalty is
defined as the average over-allocation of containers. For-
mally, the expression (sk−si,k)

+ =max{sk−si,k,0} is the
instantaneous over-allocation for instance i at time-step
k. Accordingly, the over-allocation penalty is given by
Ao(s) = 1

N ∑
N
i=1 ∑k(sk− si,k)

+.
Under-allocation penalty. We define a penalty which
captures the eventual under-allocation of resources. In-
tuitively, we allow the job to “catch up” on under-
allocations using resources available later in the run. For-
mally, we define the debt for instance i at time-step k as
Di,k(s1, . . . ,sk) = (Di,k−1 + si,k− sk)

+, with Di,0 = 0. Ob-
serve that the allocation can decrease the debt over time,
but cannot accumulate “credit” for later times (i.e., the
debt cannot go below zero). The under-allocation penalty
is the average debt at the last time step. Accordingly,
Au(s) = 1

N ∑
N
i=1 Di,K(s).

The idea behind choosing these particular forms of
penalties is to model, as closely as possible, the usage
of allocated resources by a job that requests them. Par-
ticularly, the over-allocation penalty models the amount
of unused resources because the job instance doesn’t need
them. Wasted resources allocated in a time-step cannot
be recovered back at a later time-step. However, a short-
age of resources at a time-step can be satisfied at a later
point in time assuming the job is elastic. Final shortage of
provisioned resources has to be counted only at the end;
hence motivating the under-allocation penalty.
Avoiding lazy solutions. Just optimizing the above cri-
teria can lead to solutions that lazily under-provision ini-
tially and compensate by aggressively allocating towards
the end of a job’s execution. So we add the follow-
ing regularization constraint to the optimization problem
1
N ∑

N
i=1

∑k(si,k−sk)
+

∑k si,k
≤ ε . In words, we wish to sustain the

average normalized instantaneous under-allocation below
a threshold ε . While the objective and the constraints have
non-linear terms, the optimization problem can be casted
as an LP through standard lossless transformations.

The “right” value of ε may depend on the job character-
istics (e.g., size, duration). In order to reduce the burden
of calibrating the value of ε for every job, we roll ε into
the optimization problem as follows. We add a linear term
β · ε to the objective function. The value of β is set pro-
portional to the other terms in the objective function, to
make it relevant. Specifically, we solve the original op-
timization problem (without the β · ε term), and obtain
a value V . We then set β to be a fraction of that value.
Through experiments across many jobs, we found that set-
ting β as 0.1V yields good results across the board.
Complexity. The LP has (O(N×K)) number of variables
and constraints. Our sampling granularity is typically one
minute, and we keep roughly one-month worth of data.
This generates less than 100K variables and constraints.
A state-of-the-art solver (e.g., Gurobi, CPlex) can solve
an LP of millions of variables and constraints in up to few
minutes. Since we are way below the computational limit
of top solvers, we obtain a solution within few seconds for
all periodic jobs in our clusters.
Estimating parallelism. We assume that the skylines
used to derive R∗ are generated under capacity alloca-
tions sufficient to satisfy the maximum parallelism a job
instance can harness. This assumption holds for produc-
tion jobs because they are typically over-allocated to meet
their deadlines. Under this assumption, we treat the esti-
mate s=(s1, . . .sK) of a job’s resource requirement as also
being its maximum parallelism for each timestep k. Fur-
ther, we assume by default that the minimum parallelism
of a job is one container (i.e., any requirement sk can be
stretched over time); this assumption can be overridden
by either users or operators, assuming that they have addi-
tional knowledge about the inner working of the jobs. In-
ferring the min-parallelism automatically remains an open
future direction.

6 Packing multiple periodic jobs
In this section, we provide an overview of LowCost – the
algorithm we use to pack multiple periodic jobs.

6.1 Periodic reservations
Regardless of the packing algorithm we shall use, we face
a practical challenge of how to reserve resources for mul-
tiple, possibly infinite, instances of a periodic job. It is
inefficient to calculate and store a separate reservation for
each instance of a periodic job. To address this challenge,
we force the constraint that all instances associated with
the same periodic job would have the same reservation
across runs (namely, the same offset with respect to the
period of the job). E.g., a daily job which requires 10 con-
tainers for one hour between 10am and 4pm maybe forced

to execute between noon to 1pm every day. While this de-
sign choice might reduce the flexibility of a reservation-
packing algorithm, it provides stronger predictability to
users and reduces allocation complexity.

Having a fixed offset for each periodic jobs produces
a repeating pattern in the overall allocation of all peri-
odic jobs. We identify and store the smallest repeating
unit which can accurately capture this recurring pattern
in the set of all periodic jobs. In particular, we use the
Least Common Multiple (LCM) of the time periods as
the length of the internal storage unit. This ensures that
all periodic jobs align with the boundaries of the storage
unit; see Fig. 6 for an illustration. From an algorithmic
perspective, one can determine how to pack multiple pe-
riodic jobs by only focusing on the LCM representation.
This speeds up the packing algorithm, as it does not need
to consider separately each instance of the periodic job.

Figure 6: Illustration of LCM representation for multiple
periodic reservations.

One may argue that the LCM can get very large, due to
slightly “off-kilter” periods of a few jobs (e.g., 58 minute
period). However, as shown in Fig. 1b, the distribution of
periods in our clusters shows that most period values are
divisors of one day. Accordingly, in practice, we set the
LCM to be one day. The small fraction of jobs with peri-
ods that are not amenable (off-kilter or periods larger than
one day) are accommodated using non-periodic reserva-
tions for each instance. We note that the LCM can be
reconfigured in case of many such outliers.

6.2 Problem formulation
Setting. The input for a planning algorithm is a set of pe-
riodic jobs and a time range [0,T], which represents the
LCM period as described above. These jobs are typically
revealed to the system one by one – i.e., in an online fash-
ion. For simplicity, we describe the algorithmic problem
under the assumption that each job has one instance within
the LCM; we remove this assumption towards the end of
the subsection. Each job j is characterized by a start time
a j, a deadline d j, and a collection of stages k ∈ [1,K j].
Each stage k captures a timestep of the reservation (see
§5), hence is characterized by a total demand of s j

k con-

1 2 3 4

43

𝑑𝑗𝑎𝑗

existing reservations

new job

14 x 8 x 16 x 12 x

resources

Figure 7: An example of LowCost execution. The new
job has four stages with different number of containers.
Stage 3 is currently being provisioned. Since the stage
demands 16 containers and the total remaining demand is
38 containers, the time-interval for this stage is 16/38 of
the time available, i.e., 16

38 · 19 = 8. The arrow indicates
where the next container of stage 3 would be allocated.

tainers; the stage may also have a minimum parallelism
constraint (or gang size) of gk containers.
Objective and Constraints. The goals of the packing al-
gorithm are to (i) allocate containers to all periodic jobs,
such that their requirements are met by the deadline, and
(ii) minimize the waiting time for non-periodic, ad-hoc
jobs. These goals can be better fulfilled if the cluster
load is balanced over time. Intuitively, a balanced allo-
cation increases the likelihood of accommodating future
jobs (both periodic and non-periodic) that arrive into the
system. As a concrete measure for a balanced allocation,
the objective of LowCost is to minimize the maximal total
allocation over time. We impose the following constraints
on any solution. First, unless strictly necessary, we do
not allow re-scheduling of jobs that are already in the sys-
tem. This is important for business continuity. Second,
because we typically use a sequence of stages to represent
resource skylines, the entire allocation has to be contigu-
ous, i.e., we do not allow “holes” in the allocation.

We note that the resulting online scheduling problem is
hard already for single-stage jobs – Even the offline prob-
lem is NP-hard, as it generalizes the makespan minimiza-
tion problem on multiple machines (e.g., [34]).
Requirements. We highlight the main requirements from
a packing algorithm. The offline version of our planning
problem can be casted as a Mixed Integer Linear Program
(MILP). However, we prefer a quicker and “lighter” solu-
tion in terms of the running complexity. The main reason
for not relying on rather costly solvers, is that Morpheus
may often update the reservation plan. For example, upon
arrival of a new periodic job, or as a consequence of
changes in the resource estimations (hence reservation)
of a job. On a related note, we need an incremental so-
lution. That is, we wish to keep the reservations steady

for jobs that are already in the system, and do not exhibit
substantial changes in their resource demand.

6.3 Packing with LowCost
Cost function. LowCost uses a cost-based approach
for allocation of containers that takes into account
current cluster allocation and the resource demand of
each job – each time slot t is associated with a cost
c(t). By default, the cost function c : N → R repre-
sents the current load of the cluster. Formally, c(t) =

max
{

load(MEM,t)
capacity(MEM,t) ,

load(cores,t)
capacity(cores,t)

}
, where load(·, t) rep-

resents the total allocation of the resource at time t, and
capacity(·, t) represents its capacity.
The basic algorithm. In a nutshell, the idea behind Low-
Cost is to allocate each incoming job in a way that is cost-
efficient with respect to maxt c(t). To that end, LowCost
follows a greedy procedure which places containers itera-
tively at cost-efficient positions.

In more detail, LowCost handles the stages one by one
in reverse chronological order. For each stage k, LowCost
first sets a time interval I j,k = [τ l

j,k,τ
r
j,k] during which the

stage can be allocated. τr
j,k is set right before the alloca-

tion of stage k+1. The length of I j,k is set proportional to
the ratio between the demand of the stage and the total de-

mand of the remaining stages, i.e., s j
k

∑
k
k′=1 s j

k′
; see Fig. 7 for

an example. To accommodate the contiguous allocation
constraint, the eligible time steps for allocating the next
gang of a given stage are [τcur

j,k −1,τr
j,k], where τcur

j,k is the
leftmost timestep which includes some non-zero value for
the current allocation to the stage. LowCost repeats the
above procedure for different end points, and chooses the
allocation with the minimum cost.
Multiple instances. Finally, a periodic job may have mul-
tiple instances within the LCM (e.g., an hourly job j,
where the LCM is one day). As mentioned earlier, we
place all the instances of the job with the same offset with
respect to the period of the job (e.g., all instances of j
should start at the same time-of-day). We incorporate this
constraint in LowCost as follows. Observe that we essen-
tially need to decide on the placement of a single instance.
To do so, for each timestep within the job’s period, we set
the cost as the maximal cost across all timesteps with the
same offset with respect to the period. For example, the
cost seen by j at the 5-th minute would be the maximum
over the costs at 12:05, 1:05, etc. LowCost then places a
single instance based on these costs, and repeats the as-
signment for all instances within the LCM.

We wish to analyze in isolation the consequences of this
choice. Accordingly, for the analysis sake, we assume
that all periodic jobs have the same skyline requirement

for their instances, but still jobs can differ in their period.
Under these assumptions, we measure the performance of
LowCost using the standard measure of competitive ratio.
The competitive ratio of an online algorithm is the ratio
of cost (for our problem, the maximal height of the allo-
cation) incurred by the online algorithm compared to the
offline optimal solution. Let Pmin,Pmax denote the mini-
mum and maximum period of jobs within the LCM. We
have the following guarantee:

Theorem 6.1 Under the above assumptions, LowCost is
O
(

log
(Pmax

Pmin

))
-competitive for the objective of minimiz-

ing the maximum height of the allocation.

The proof follows by showing that LowCost leads to an
efficient (constant-competitive) schedule when jobs have
the same period. The log-factor arises due to the range
of possible job periods. Intuitively, this result implies that
there is bounded performance loss due to the combination
of our design and algorithmic choices.
Non-periodic jobs. So far we described how we reserve
resources for periodic jobs. We now briefly address how
Morpheus handles non-periodic jobs. The design of Mor-
pheus assumes that periodic jobs have strict priority over
non-periodic (mostly ad-hoc) jobs. This is commensurate
with our analysis, which indicates that the bulk of peri-
odic jobs are (business-critical) production jobs (see §2).
Accordingly, when Morpheus needs to allocate resources
to a new periodic job, it ignores most of the scheduled
non-periodic jobs (excluding periodic jobs that are han-
dled as non-periodic ones), and then attempts to reallocate
resources for non-periodic jobs in case they need more re-
sources. Specifically, Morpheus places the non-periodic
using the same logic of the basic LowCost algorithm, de-
scribed above. The only difference is that the plan for the
lower-priority non-periodic jobs uses the residual capac-
ity, after subtracting the chunk used for periodic jobs.

7 Dynamic Reprovisioning
While reservations can eliminate sharing-induced unpre-
dictability, they provide little protection against inherent
unpredictability arising from hard-to-control exogenous
causes, such as infrastructure issues (e.g., hardware re-
placements (see §2), lack of isolation among tasks of mul-
tiple jobs, and framework code updates) and job-centric
issues (changes in the size, skew, availability of input data,
changes in code/functionalities, etc.).

Although eliminating all the causes of unpredictabil-
ity is very hard, we can mitigate their impact on SLO at-
tainment during runtime, by dynamically modifying the
current instance of a periodic reservation. To that end,
we design a dynamic reprovisioning mechanism which is

triggered when a job execution appears to be headed for
an SLO violation.
Dynamic Reprovisioning Algorithm (DRA). The Dy-
namic Reprovisioning Algorithm (DRA) we currently
employ in Morpheus continuously monitors the resource
consumption of the job, compares it with the resources
allocated in the reservation and intuitively “stretches”
the skyline of resources to accommodate a slower-than-
expected job execution. Reprovisioning is triggered when
a job resource demand (used containers plus pending ask)
exceeds the resources allocated in the skyline. Extra re-
sources are granted for up to T seconds (default 1min), af-
ter which DRA is reevaluated again. The amount of extra
resources is based on the job’s instantaneous demand, but
capped at ρ ∗max(Rrecent) where Rrecent is the amount of
resources allocated in the skyline in the last few minutes
(default 2min), and ρ is a fudge factor (default value 2)
that allows an elastic job to use extra parallelism to make
up for lost time; note that DRA verifies that the job does
not get more resources than it requests. Given this pro-
posed reprovisioning, DRA updates the current instance
of the periodic reservation (by increasing it locally). This
is done by invoking LowCost, which ensures the update is
accepted only if enough resources exist in the plan.

Map1 Map2 Red1 Red2

chance for
reprovisioning

2500

2000

1500

1000

500

0
0 50 100 150 200 250

Figure 8: Resource consumption over time for 100 runs of
TPC-H Query1 on 2200 parallel containers (job running
alone in the cluster).

The proposed heuristics cope well with the inherent un-
predictability we observed in Section 2.2. We show this
by plotting in Fig. 8 the resource consumption over time
for the TPC-H Query1 (100 runs, and highlighting 3 ran-
dom ones in red/green/blue). DRA kicks in for jobs that
have straggling Map2 tasks, which translates in a delayed
start of Red1 stage. By extending the 1000 containers
allocation at the end of Red1 by an extra minute we al-
low most jobs to complete effectively. Similar analysis
has been performed for other TPC-H queries with equally
good results, and in §9 we validate DRA performance on
large production traces.

DRA is simple to implement and rather robust, how-
ever deeper understanding of the application-framework
could lead to more precise reprovisioning decisions. In

Morpheus’ pluggable architecture, this could be achieved
by borrowing techniques from [15, 41, 19].
Adjusting LowCost to facilitate reprovisioning. The po-
sition of the original reservation allocation with respect to
the [TinAvail,ToutRead] window is critical for the effective-
ness of dynamic reprovisioning. In order to improve the
success probability of reprovisioning, it is necessary to
allocate resources far away from the deadline (allowing
sufficient slack in time for the reprovisioning algorithm
to compensate a slower than expected run). However, in
case of high variance in input data availability, it is benefi-
cial to place the allocation close to the deadline (to ensure
that data is available before allocation and thus reduce
the probability of reprovisioning). To account for this
trade-off, we adjust LowCost’s cost function for “prob-
lematic” jobs (e.g., jobs with high CV for Tstart−TinAvail,
ToutRead−Tend) by adding an alignment penalty . Specif-
ically, the penalty is linearly proportional to the absolute
time-distance between the mid-point of the allocation, and
the mid-point between the start time and the deadline (i.e.,
a j+d j

2). This penalty incentivizes allocations that are not
too close to neither the start or the deadline of the job.
This trades the two dangers of allocating resources before
the input is available, and not having enough slack after
the allocation before the deadline.

8 Implementation
We implement the design of §3 as extensions to Apache
Hadoop / YARN [51]. Referring back to the architecture
of Fig. 3, we implement the three components of Mor-
pheus as follows. First, the automatic inference engine
operates as a standalone service. It continuously con-
sumes provenance and telemetry data and submits reser-
vation requests to the Resource Manager (RM)—YARN’s
centralized scheduler component [51]—via its REST end-
point. Second, the reservation placement component im-
plements LowCost as in-process functionality of the RM.
Third, the dynamic reprovisioning mechanism is imple-
mented as a monitoring thread in the RM, which observes
job resource requests and triggers resizing of reservations.
Each of the above components is highly pluggable and
can easily be specialized to leverage framework-specific
knowledge, such as [19, 41, 15].

In the rest of this section, we discuss some of the engi-
neering challenges in building a production-ready system.
Scalability. Morpheus’ periodic reservations are instanti-
ated as per-job queues in the RM. Each queue’s capacity
continuously grows and shrinks according to the provi-
sioning skyline. YARN’s RM scheduler [51], is designed
to support a small number of infrequently reconfigured
queues (e.g., one per division of a company). Hence, the

implementation leveraged strict consistency via locking
for queue updates. This limited Morpheus’ scalability to
levels far below our production needs. We address this by
substantially reworking the RM scheduler locking mecha-
nisms through a combination of finer-granularity locking
and lock-free data structures. The key intuition is that
the RM operates as an asynchronous event-driven sys-
tem based on heartbeats and, therefore, is amenable to
operating with relaxed consistency. We carefully study
the effects of our changes and confirm that they induce
very small and transient inconsistencies, that are natu-
rally resolved without visible impact within milliseconds.
This results in a sustained scalability orders of magnitude
higher than the baseline. We showcase this experimen-
tally running on a 2700-node cluster in §9.3.
Cold-Start. An obvious concern for a system that relies
on history to make inference is how to handle cold-start
scenarios, such as non-recurring jobs or initial runs of
a new recurring job. We have three lines of defense to
cope with this problem: (a)Backward compatibility: Our
approach by design is able to support running jobs with
existing fair-queueing infrastructure mode. (b) Manual
SLOs and job resource models: The APIs supporting the
sign-off (step 3) in our job lifecycle can be used to sup-
ply a manually defined SLO and job resource model (both
for periodic and non-periodic jobs [13]). (c) Application-
specific tools: Given a fixed application framework (e.g.,
Hive/Giraph/Scope/Spark) it is possible to build tools that
leverage sample runs and careful modeling to predict the
behavior of the full-scale execution of the jobs. We exper-
imentally integrated with Predict [41] to support Giraph
computations, as well as recently enabled similar func-
tionalities for Hive/Tez/MapReduce with the Perforator
[15] effort. In [15], we take Hive queries and perform car-
dinality estimation via lightweight profiling of UDFs. We
then use this accurate cardinality estimates together with
explicit models of Tez/MapReduce pipelining and paral-
lelism and hardware performance profiles to estimate a
job demand model. Perforator is integrated with our in-
frastructure, but complete integration between Morpheus
and Perforator technologies is part of our future work.

9 Experimental Evaluation
In this section, we demonstrate effectiveness and scalabil-
ity of Morpheus through simulations and cluster runs.
Experimental Settings Our experiments are based on
two production traces and a synthetic benchmarking suite:
Enterprise-trace, a one-month trace of jobs running on a
large 50k-node production COSMOS cluster [9]; Hadoop-
trace, a three-month trace derived from a 4k nodes pro-
duction Hadoop cluster; TPC-H, the standard TPC-H

0%

20%

40%

60%

80%

100%

Morpheus
α=1%

Morpheus
α=5%

user

re
so

u
rc

e
s

(n
o

rm
al

iz
e

d
)

Used

Provisioned

α Static
prov.

Dynamic
prov.

0% 58% 4400%

0.10% 37% 1600%

0.50% 19% 1400%

1% 5% 1300%

5% -45% 500%

10% -67% 246%

B) Job Provisioning D) Cluster sizeC) SLO violation reduction

0.01 1 10010 10000.1

1.0

0.8

0.6

0.4

0.2

Deadline (ratio of job duration)

C
D

F
A) SLO Extraction

Figure 9: Comparison of Morpheus with current user manual provisioning.

benchmark running on Hive/Tez at 10TB scale. The
enterprise-trace has been discussed in §2, and TPC-H is
well documented [12]. The table below presents a break-
down of jobs types and size for our hadoop-trace. Jobs are
clustered into multiple classes based on duration and size.

Hadoop-trace

framework class freq. % avg avg
duration (sec) parall.

MR/TEZ
S 7% 73 1.5
M 15% 156 19
L 0.6% 2778 469

SPARK

S 39.8% 173 2.6
M 14.52% 605 18
L 7.8% 1400 88

XL 4% 6300 510
XXL 8.6% 24570 1000

MPI - 1.56% 7800 400

For each category we extract salient statistical distri-
butions: job arrival times, workload frequency, job paral-
lelism, and job duration. These distributions are used to
power a Gridmix-based [48] load generator.

9.1 Performance on the enterprise-trace
First, we challenge Morpheus in a simulation based on our
largest dataset, the enterprise-trace. For this data-set we
have full provenance graph (PG) and telemetry informa-
tion, and we can thus test all components of Morpheus.
Sensible SLOs for most jobs. A pressing question we
want to answer is whether the SLOs we derive are repre-
sentative of user expectations. Short of a full-scale user
study, we study a reliable proxy metrics: job success/-
failure. Given job pairs A→ B, such that B is the first
consumer of A’s output, we measure from the trace:
P(Bfail | AmissSLO)≈ P(Bfail | Afail)> 4×P(Bfail | AmeetSLO)

This shows that the negative impact of missing a deadline
is comparable with the impact of complete failure of the
job. This is empirically 4× worse for the dependent job B
than if A had met the SLO.

Second, we observe that Morpheus SLO target extrac-
tor successfully derives SLOs for over 70% of the millions
of instances of periodic jobs in the enterprise-trace. For
the remainder we have too little data in our trace to de-
rive SLOs with good confidence (e.g., we only have four

samples in our trace for jobs with weekly periodicity).
SLOs, job modeling, packing, and reprovisioning. In
Fig. 9 we use our enterprise-trace (70% training and 30%
testing) to show Morpheus’ ability to: (A) extract SLOs,
(B) derive job resource models, (C) achieve high SLO at-
tainment gains over the baseline, and (D) pack reserva-
tion efficiently (measured as potential cluster reduction).
In Fig. 9a, we present a CDF of the ratio between the
slack (time between job-completion and deadline) and the
job duration (ToutRead−Tend

Tend−Tstart
). The majority of jobs have

substantial amount of slack (almost 70% of jobs have
enough slack to serially execute two or more times before
the deadline)—this flexibility is leveraged during packing.
Fig. 9b compares the job provisioning achieved by Mor-
pheus under different assignments of the parameter α with
the user-supplied one (matching our motivation Fig. 2a).
Morpheus drastically outperforms the user, by being con-
sistently closer to the ideal provisioning (1:1 ratio, shown
as vertical dotted line). Different assignment of α affect
how tightly the skyline is fitted, but also how likely we
are to miss an SLO (Fig. 9c). We find that a value of 1%
leads to the best balance, yielding 13× reduction of the
worst-case SLO misses—these are defined as the amount
of SLO violations a periodic job would incur if no oppor-
tunistic (fair-share) capacity is available. Finally Fig. 9d
shows that our packing algorithms manage to handle the
complex skylines produced by the job modeling compo-
nent, and leverage the slack in SLOs to densely pack the
cluster agenda. This matches our important constraint of
not increasing the cluster cost (but actually lowering it).
The ratio between used and provisioned indicates that we
achieve high-utilization, even though we rely solely on
guaranteed provisioning, while the user compensate with
under-allocation via opportunistic fair-sharing. Note that
our unused capacity is anyway redistributed fairly, but we
do not rely on it to achieve high utilization.

9.2 Breakdown of contributions
Fig. 10a shows a breakdown of contributions of our static
techniques. We fix a target SLO attainment level 5×

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

o
u

rc
es

 (
n

o
rm

al
iz

ed
)

Provisioned

Used

TECHNIQUES
SLO + Packing
Auto-Skyline

✔
✔

✔
✔

U
se

r
p

ro
v.

A) B)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

SL
O

 V
io

la
ti

o
n

s

Cluster Size

Morpheus
static prov.

User
Prov.

Morpheus
dynamic prov.

Figure 10: Gain break-down: each technique employed
by Morpheus delivers sizable improvements.

above the baseline, and show the smallest size cluster
required to achieve that under different combinations of
our techniques. In particular, we show that: 1) SLO-
extraction + packing lower the baseline cluster size by 6%,
2) Job resource modeling, i.e., using our skyline instead of
user supplied provisioning, can alone lower cluster size by
16%, and that 3) when combined they achieve 19% total
reduction. Fig. 10b highlights the trade-off between uti-
lization and predictability, by showing how turning on/off
our dynamic reprovisioning we can either: 1) match the
user utilization level, and deliver 13× lower violations, or
2) match the current SLO attainment and reduce cluster
size by over 60% (since we allow more aggressive tun-
ing of the LP, and repair underallocations dynamically).
Hence, each of the techniques we developed is required
and supplies a substantial portion of our overall win.

9.3 Physical deployments and scale tests
In this section, we challenge Morpheus with a combi-
nation of the Hadoop-trace and the TPC-H workloads.
We test our system under 3 environments: (a) 275-node
cluster with 2200 containers (1core, 8GB RAM per con-
tainer), (b) 2700-node cluster (100k containers) and (c)
4000-node production cluster.
Adversarial workload. We validate Morpheus’ ability to
protect jobs from an adversarial workload. In Fig. 12, we
show an hourly periodic workload comprised of several
TPC-H queries running on a 275-node cluster (equivalent
to 2200 containers). The workload imposes heavy load
on the cluster, with container utilization hovering near
100% of the available capacity during most of the experi-
ment. The jobs are submitted periodically within a reser-
vation we derived from historical runs. We then surround
the periodic jobs with thousands of ad-hoc jobs from the
Hadoop-trace which can take upto 75% of the cluster ca-
pacity. Thus, periodic reservations are run against a clus-
ter stressed with production workload. Morpheus success-
fully eliminates all sharing-induced variability. To further
challenge our system, we manually delay the start of one
of the queries. The system immediately reacts by dynami-

time(hours)
0 1 2 3 4 5 6 7 8

time(hours)
0 1 2 3 4 5 6 7 80

200

400

600

800

re
se

rv
at

io
ns

0

20

40

60

80

m
em

or
y

(T
B

)

Figure 11: Scalability metrics for large scale real cluster
run (on 2700 nodes)

cally reprovisioning the (delayed) job with extra capacity,
compensating for our actions and meeting the target SLO.
Scale test (2700 nodes). We validate Morpheus’ scala-
bility to target production clusters, by running it live on
a 2700-node cluster, scheduling almost 100k concurrent
containers through the ResourceManager. This is a high-
load workload designed to stress the scheduling infras-
tructure. We run a sustained 8hr experiment, with hun-
dreds of reservation submissions per hour. We measure
the system performance both as perceived by the user (not
shown), and as observed by instrumented system compo-
nents (Fig. 11). The key takeaway of this experiment is
three-fold: 1) we demonstrate that Morpheus is able to
sustain high load on a large cluster, 2) we confirm that in a
real deployment Morpheus can achieve high plan utiliza-
tion, 3) we confirm that user-facing latencies are in-line
with production cluster user expectations. We see up to
900 concurrent reservations in the plan, with up to 270
of them active throughout the 8hr run. At peak, aggre-
gate guaranteed capacity exceeds the 92TB of container
memory, reaching maximum cluster capacity. The system
remains responsive throughout the experiment with reser-
vation submission latencies within 10sec.
Production deployment. We validate our system by de-
ploying it in a 4000-node production environment. In this
context, we are only allowed to run a small number of pe-
riodic jobs via reservations, while the bulk of the load is
imposed by ad-hoc and manually provisioned jobs. Fo-
cusing on a periodic run of TPC-H Query3, the runtime
variability was well controlled, despite utilization swings
of whole cluster in excess of 69k cores during the job exe-
cution. During the same period, jobs running without the
protection of reservations observed much larger variance.

10 Related Work
SLO extraction. To the best of our knowledge, we are
the first to propose fully automated extraction of SLOs
from historical data. Close related work focused on semi-
automated, iterative generation of SLOs for databases
[40] and web services [46].
Runtime/provisionining estimation. Substantial re-

reprovisioning

LCM

total container
utilization

Figure 12: Run on 275-node cluster: shows an example of successful dynamic-reprovisioning.

lated work has been devoted both in database and sys-
tems literature to estimate query runtimes, and resource
needs. Runtime prediction has been studied in databases
[33, 10, 21], Big-Data/Cloud [39, 38, 52, 20, 17], and
HPC/Grid computing settings [53, 31, 45]. A large body
of work [54, 32, 11] leveraged known MapReduce job
structure to accurately predict both resource demand and
runtimes across different data input sizes. Our architec-
ture allows using any of these techniques, when the ap-
plication framework is known, while this paper presents
a framework-agnostic solution purely based on history.
History-based modeling has been used in other contexts:
failure-prediction for quality of service (QoS) [18], and
resource allocation in business process management [28,
3, 35].
SLO enforcement. Automatic techniques for meeting
SLOs [59, 19], use a combination of profiling and job
structure knowledge for runtime prediction. PRESS [23]
focuses on meeting SLOs at a single-node level and can
adjust allocated resources online. Jockey [19] provides a
solution for dynamic reprovisioning based on job models
derived from execution history and job’s internal depen-
dencies. It can be used as a framework-specific dynamic
reprovisioning policy. Morpheus provides deadlines and
global arbitration, which are beyond the scope of [19].
Other dynamic enforcement mechanisms include control-
theoretic approaches such as [16, 49].
Online packing and scheduling. The scheduling prob-
lem solved by Morpheus is a significant generalization of
online multidimensional bin-packing problems [4, 25, 7,
5] and online deadline-scheduling problems (see [36, 6]
and references therein). Placement in periodic settings has
also been studied in the context of real-time and multi-
processor machines [8, 47, 14]. However, the combina-
tion of jobs with stage-dependencies, periodicity and and
deadlines requires novel algorithm design.
Cluster Scheduling. There has been a substantial body of
work on cluster scheduling for big-data analytics [22, 29,
58, 50, 24]. Corral [30] leverages job recurrence and pre-
dictable resource requirements to coordinate data and task
placement for higher utilization, but does not consider
SLOs. Based on published material, SLO inference/en-

forcement is not present in Mesos [27], Borg [55], and
Omega [44]. However, Morpheus’ mechanisms can be
adapted to alternative underlying schedulers. Apollo [9]
makes more explicit trade-offs on time vs locality at the
task level, but does not provide job-completion SLOs.
YARN’s reservation system [13] serves as a base for Mor-
pheus, but it left unsolved the SLO and job resource model
derivation, support for periodic reservations, and dynamic
reprovisioning. Moreover, the packing algorithms we
present here outperform the one in [13] even for non-
periodic jobs [1].

11 Conclusion
In this paper, we present Morpheus, a system de-
signed to resolve the tension between predictability and
utilization—that we discovered thorough analysis of clus-
ter workloads and operator/user dynamics. Morpheus
builds on three key ideas: automatically deriving SLOs
and job resource models from historical data, relying on
recurrent reservations and packing algorithms to enforce
SLOs, and dynamic reprovisioning to mitigate inherent
execution variance. We validate our design and imple-
mentation against large production traces, and on a 2700-
node cluster. Morpheus reduces worst-case SLO viola-
tions by 5-13×, while concurrently reducing the cluster
footprint by 14-28%. Overall, Morpheus enables pre-
dictable performance with less resource provisioning—a
win-win for operators and users.

Acknowledgements
We thank our shepherd Sasha Fedorova, and the review-
ers for their insightful feedback. We are particularly in-
debted to Chris Douglas for numerous conversations that
helped shape this project. We are also grateful to many
colleagues for many great discussions: Ricardo Bian-
chini, Roni Burd, Kishore Chaliparambil, Chris Douglas,
Avrilia Floratou, Giovanni M. Fumarola, Greg Ganger,
Brighten Godfrey, Solom Heddaya, Virajith Jalaparti,
Alekh Jindal, Srikanth Kandula, Konstantinos Karana-
sos, Alica Li, Joseph Naor, Vivek Narasayya, Sekhar Pa-
supuleti, Sean Po, Raghu Ramakrishnan, Keerthi Selvaraj,
Arun Suresh, Vin Wang, and Markus Weimer.

References
[1] LowCost: A Cost-Based Placement Agent for

YARN Reservations. https://issues.
apache.org/jira/browse/YARN-3656.

[2] Support for recurring reservations in the YARN
Reservation System. https://issues.
apache.org/jira/browse/YARN-5326.

[3] M. Arias, E. Rojas, J. Munoz-Gama, and
M. Sepúlveda. A framework for recommend-
ing resource allocation based on process mining. In
Business Process Management Workshops - BPM
2015, 13th International Workshops, Innsbruck,
Austria, August 31 - September 3, 2015, Revised
Papers, pages 458–470, 2015.

[4] J. Augustine, S. Banerjee, and S. Irani. Strip Pack-
ing with Precedence Constraints and Strip Packing
with Release Times. Theoretical Computer Science,
410(38-40), 2009.

[5] Y. Azar, I. R. Cohen, and I. Gamzu. The loss of serv-
ing in the dark. In Proceedings of the Symposium on
Theory of Computing Conference, STOC, 2013.

[6] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S.
Naor, and J. Yaniv. Truthful online scheduling with
commitments. In Proceedings of the Sixteenth ACM
Conference on Economics and Computation, pages
715–732. ACM, 2015.

[7] N. Bansal and A. Khan. Improved Approximation
Algorithm for Two-Dimensional Bin Packing. In
Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, 2014.

[8] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources.
In Proceedings of the 9th International Symposium
on Parallel Processing, IPPS ’95, pages 280–288,
Washington, DC, USA, 1995. IEEE Computer Soci-
ety.

[9] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable and
coordinated scheduling for cloud-scale computing.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 285–
300, Broomfield, CO, Oct. 2014. USENIX Associa-
tion.

[10] S. Chaudhuri and V. Narasayya. Self-tuning
database systems: A decade of progress. In Proceed-
ings of the 33rd International Conference on Very

Large Data Bases, VLDB ’07, pages 3–14. VLDB
Endowment, 2007.

[11] L. Cherkasova. Performance modeling in Mapre-
duce environments: Challenges and opportunities.
In Proceedings of the 2nd ACM/SPEC International
Conference on Performance Engineering, ICPE ’11,
pages 5–6, New York, NY, USA, 2011. ACM.

[12] T. P. P. Council. TPC-H benchmark specification.
Published at http://www. tcp. org/hspec. html, 2008.

[13] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan,
R. Ramakrishnan, and S. Rao. Reservation-based
scheduling: If you’re late don’t blame us! In Pro-
ceedings of the ACM Symposium on Cloud Comput-
ing, SOCC, 2014.

[14] R. I. Davis and A. Burns. A survey of hard real-
time scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

[15] A. Desai, K. Rajan, and K. Vaswani. Critical path
based performance models for distributed queries. In
Microsoft Tech-Report: MSR-TR-2012-121, 2012.

[16] Y. Diao, J. L. Hellerstein, S. Member, S. Parekh,
S. Member, R. Griffith, G. E. Kaiser, S. Member,
and D. Phung. A control theory foundation for
self-managing computing systems. IEEE journal,
23:2213–2222, 2005.

[17] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y.
Zomaya, and B. B. Zhou. Profiling applications for
virtual machine placement in clouds. In Cloud Com-
puting (CLOUD), 2011 IEEE International Confer-
ence on, pages 660–667. IEEE, 2011.

[18] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Ko-
vacs, and R. M. Badia. Semantic resource alloca-
tion with historical data based predictions. In The
First International Conference on Cloud Computing,
GRIDs, and Virtualization, CLOUD COMPUTING
2010, 2010.

[19] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: guaranteed job latency in data
parallel clusters. In Proceedings of the ACM Eu-
ropean Conference on Computer Systems, EuroSys,
2012.

[20] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Pat-
terson. Statistics-driven workload modeling for the
cloud. In Data Engineering Workshops (ICDEW),
2010 IEEE 26th International Conference on, pages
87–92. IEEE, 2010.

[21] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. Jordan, and D. Patterson. Predicting mul-
tiple metrics for queries: Better decisions enabled
by machine learning. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on,
pages 592–603. IEEE, 2009.

[22] A. Ghodsi, M. Zaharia, B. Hindman, A. Kon-
winski, S. Shenker, and I. Stoica. Dominant re-
source fairness: Fair allocation of multiple resource
types. In Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Imple-
mentation, NSDI’11, pages 323–336, Berkeley, CA,
USA, 2011. USENIX Association.

[23] Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedic-
tive Elastic ReSource Scaling for cloud systems. In
2010 International Conference on Network and Ser-
vice Management, pages 9–16, Oct 2010.

[24] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 455–466.
ACM, 2014.

[25] R. Harren and W. Kern. Improved Lower Bound for
Online Strip Packing. Theory of Computing Systems,
56(1), 2015.

[26] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A self-tuning
system for big data analytics. In CIDR, volume 11,
pages 261–272, 2011.

[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing
in the data center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI’11, pages 295–308, Berkeley,
CA, USA, 2011. USENIX Association.

[28] Z. Huang, W. Aalst, X. Lu, and H. Duan. Rein-
forcement Learning Based Resource Allocation in
Business Process Management. Data and Knowl-
edge Engineering, 70(1):127 –145, 2011.

[29] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: fair scheduling
for distributed computing clusters. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 261–276. ACM, 2009.

[30] V. Jalaparti, P. Bodik, I. Menache, S. Rao,
K. Makarychev, and M. Caesar. Network-aware
scheduling for data-parallel jobs: Plan when you
can. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 407–420, New York, NY,
USA, 2015. ACM.

[31] S. Krishnaswamy, S. W. Loke, and A. Zaslavsky.
Estimating computation times of data-intensive ap-
plications. IEEE Distributed Systems Online, 5(4),
April 2004.

[32] P. Lama and X. Zhou. Aroma: Automated resource
allocation and configuration of mapreduce environ-
ment in the cloud. In Proceedings of the 9th Interna-
tional Conference on Autonomic Computing, ICAC
’12, pages 63–72, New York, NY, USA, 2012. ACM.

[33] K. Lee, A. C. Konig, V. Narasayya, B. Ding,
S. Chaudhuri, B. Ellwein, A. Eksarevskiy, M. Kohli,
J. Wyant, P. Prakash, R. Nehme, J. Li, and
J. Naughton. Operator and query progress esti-
mation in microsoft sql server live query statis-
tics. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIG-
MOD 2016). ACM Association for Computing Ma-
chinery, June 2016.

[34] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approx-
imation algorithms for scheduling unrelated paral-
lel machines. Mathematical programming, 46(1-
3):259–271, 1990.

[35] T. Liu, Y. Cheng, and Z. Ni. Mining event logs to
support workflow resource allocation. Knowl.-Based
Syst., 35:320–331, 2012.

[36] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv. Ef-
ficient online scheduling for deadline-sensitive jobs.
In Proceedings of the twenty-fifth annual ACM sym-
posium on Parallelism in algorithms and architec-
tures, pages 305–314. ACM, 2013.

[37] R. Mavlyutov, C. Curino, B. Asipov, and P. Cudre-
Mauroux. Dependency-Driven Analytics: a Com-
pass for Uncharted Data Oceans, 2016. Microsoft
Technical Report MS-TR-2016-69, http://bit.
ly/2dQfRhc.

[38] K. Morton, M. Balazinska, and D. Grossman. Para-
timer: a progress indicator for mapreduce dags. In
Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of data, pages
507–518. ACM, 2010.

[39] K. Morton, A. Friesen, M. Balazinska, and D. Gross-
man. Estimating the progress of mapreduce pipe-
lines. In Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, pages 681–684. IEEE,
2010.

[40] J. Ortiz, V. T. de Almeida, and M. Balazinska.
Changing the face of database cloud services with
personalized service level agreements. In CIDR,
2015.

[41] A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ail-
amaki. PREDIcT: Towards predicting the runtime
of large scale iterative analytics. Proceedings of the
VLDB Endowment, 6(14):1678–1689, 2013.

[42] A. D. Popescu, V. Ercegovac, A. Balmin, M. Branco,
and A. Ailamaki. Same queries, different data: Can
we predict runtime performance? In Data Engineer-
ing Workshops (ICDEW), 2012 IEEE 28th Interna-
tional Conference on, pages 275–280. IEEE, 2012.

[43] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca,
M. Vojnovic, and S. Rao. Efficient queue manage-
ment for cluster scheduling. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems, page 36. ACM, 2016.

[44] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
and J. Wilkes. Omega: flexible, scalable schedulers
for large compute clusters. In Proceedings of the
ACM European Conference on Computer Systems,
EuroSys, 2013.

[45] O. Sonmez, N. Yigitbasi, A. Iosup, and D. Epema.
Trace-based evaluation of job runtime and queue
wait time predictions in grids. In Proceedings of the
18th ACM International Symposium on High Per-
formance Distributed Computing, HPDC ’09, pages
111–120, New York, NY, USA, 2009. ACM.

[46] J. Spillner and A. Schill. Dynamic SLA template ad-
justments based on service property monitoring. In
Cloud Computing, 2009. CLOUD’09. IEEE Interna-
tional Conference on, pages 183–189. IEEE, 2009.

[47] A. Srinivasan and S. Baruah. Deadline-based
scheduling of periodic task systems on multiproces-
sors. Information Processing Letters, 84(2):93–98,
2002.

[48] The Apache Software Foundation. GridMix,
2015. http://hadoop.apache.org/docs/
current/hadoop-gridmix/GridMix.
html.

[49] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The scads di-
rector: Scaling a distributed storage system un-
der stringent performance requirements. In Pro-
ceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST’11, pages 12–12,
Berkeley, CA, USA, 2011. USENIX Association.

[50] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,
M. Harchol-Balter, and G. R. Ganger. TetriSched:
Global rescheduling with adaptive plan-ahead in dy-
namic heterogeneous clusters. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems, EuroSys’16, pages 35:1–35:16, New York,
NY, USA, 2016. ACM.

[51] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-
wal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al. Apache Hadoop YARN: Yet
Another Resource Negotiator. In Proceedings of the
4th annual Symposium on Cloud Computing, page 5.
ACM, 2013.

[52] S. Venkataraman, Z. Yang, M. Franklin, B. Recht,
and I. Stoica. Ernest: efficient performance pre-
diction for large-scale advanced analytics. In 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 363–378,
2016.

[53] S. Verboven, P. Hellinckx, F. Arickx, and J. Broeck-
hove. Runtime prediction based grid scheduling of
parameter sweep jobs. In Asia-Pacific Services Com-
puting Conference, 2008. APSCC ’08. IEEE, pages
33–38, Dec 2008.

[54] A. Verma, L. Cherkasova, and R. H. Campbell.
Aria: Automatic resource inference and allocation
for mapreduce environments. In Proceedings of the
8th ACM International Conference on Autonomic
Computing, ICAC ’11, pages 235–244, New York,
NY, USA, 2011. ACM.

[55] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In Proceedings
of the Tenth European Conference on Computer Sys-
tems, page 18. ACM, 2015.

[56] K. Wang and M. M. H. Khan. Performance pre-
diction for apache spark platform. In High Perfor-
mance Computing and Communications (HPCC),
2015 IEEE 7th International Symposium on Cy-
berspace Safety and Security (CSS), 2015 IEEE

12th International Conferen on Embedded Software
and Systems (ICESS), 2015 IEEE 17th International
Conference on, pages 166–173. IEEE, 2015.

[57] P. Wieder, J. M. Butler, W. Theilmann, and
R. Yahyapour. Service level agreements for cloud
computing. Springer Science & Business Media,
2011.

[58] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay Scheduling: A
Simple Technique for Achieving Locality and Fair-

ness in Cluster Scheduling. In Proceedings of the
ACM European Conference on Computer Systems,
EuroSys, 2010.

[59] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo.
Automated profiling and resource management of
pig programs for meeting service level objectives.
In Proceedings of the 9th International Conference
on Autonomic Computing, ICAC ’12, pages 53–62,

New York, NY, USA, 2012. ACM.

