
How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service

Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath
{supriyoghosh,t-mamola,chetanb,sumann}@microsoft.com

Microsoft

ABSTRACT
Production incidents in today’s large-scale cloud services can
be extremely expensive in terms of customer impacts and
engineering resources required to mitigate them. Despite
continuous reliability efforts, cloud services still experience
severe incidents due to various root-causes. Worse, many of
these incidents last for a long period as existing techniques
and practices fail to quickly detect and mitigate them. To
better understand the problems, we carefully study hundreds
of recent high severity incidents and their postmortems in
Microsoft-Teams, a large-scale distributed cloud based ser-
vice used by hundreds of millions of users. We answer: (a)
why the incidents occurred and how they were resolved, (b)
what the gaps were in current processes which caused de-
layed response, and (c) what automation could help make the
services resilient. Finally, we uncover interesting insights
by a novel multi-dimensional analysis that correlates dif-
ferent troubleshooting stages (detection, root-causing and
mitigation), and provide guidance on how to tackle com-
plex incidents through automation or testing at different
granularity.

CCS CONCEPTS
• General and reference → Empirical studies; Reliabil-
ity.

KEYWORDS
IncidentManagement, Empirical Study, Reliability, Distributed
Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563482

ACM Reference Format:
Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath. 2022.
How to Fight Production Incidents? An Empirical Study on a Large-
scale Cloud Service. In SoCC ’22: ACM Symposium on Cloud Com-
puting (SoCC ’22), November 7–11, 2022, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3542929.
3563482

1 INTRODUCTION
Production failures, or incidents, which adversely affect the
customers, are inevitable in large-scale cloud services. They
can be extremely expensive in terms of customer impact
and engineering resources required to resolve them. Service
providers, therefore, continuously try to minimize the fre-
quency and impact of such incidents. A first step in doing
so is an in-depth understanding of the life-cycle of incidents
happening in production. Understanding the common root-
causes can help develop techniques that can identify and
fix them before production, thereby preventing potential in-
cidents. Understanding how much engineering effort each
resolution stage consumes can help identify and optimize
bottlenecks in the process, thereby reducing the overall im-
pact duration. Empirical studies have been an important tool
to gain such deep understanding.
In recent years, several empirical studies were reported

for cloud systems. A recent work [21] analyzed production
incidents from Microsoft Azure to identify common root-
causes and resolution strategies. However, the paper does
not provide the complete picture since it was limited only
to incidents caused by software bugs. As we show, there are
many types of root-causes other than software bugs. Another
paper [13] analyzes cloud outages as observed from outside
(e.g., through news articles) and identifies root-causes and
impacts. However, fidelity of the data source is limited; e.g.,
it includes only publicly-announced incidents, it does not
describe how incidents were detected and mitigated, etc. Sev-
eral other empirical studies [12, 17, 22, 34, 35] analyze bugs
from open source applications that were found during in-
house reviewing/testing and production uses. However, they
are usually limited to specific types of software bugs and
to systems much smaller than the cloud services we con-
sider. Moreover, due to the nature of their data sources, these
studies cannot provide deep understanding of production
incidents.

126

https://doi.org/10.1145/3542929.3563482
https://doi.org/10.1145/3542929.3563482
https://doi.org/10.1145/3542929.3563482
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3542929.3563482&domain=pdf&date_stamp=2022-11-07


SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

In this paper, we systematically study 152 high sever-
ity production incidents that happened during a recent 12-
months period in a large-scale distributed cloud service,
Microsoft-Teams1 which is used by more than 250 million
users worldwide. It is a complex web-scale distributed service
built on top of the Azure IaaS infrastructure and powering
messaging, calling and meeting services for the real time
communication productivity application from Microsoft. It
is deployed across the world in tens of cloud regions and has
a fairly complex set of dependencies comprising of storage,
networking, authentication, etc. Since Microsoft-Teams pow-
ers real-time communication, reliability is paramount. This
is the first study which extensively analyzes and provides
end-to-end characterization of the reliability issues in a web-
scale customer facing service. Also, unlike previous studies,
we look at incidents caused by many types of root causes
including software bugs, and analyze how the incidents are
detected and mitigated. More importantly, by looking at the
entire life-cycle of the incidents, we identify important cor-
relation between detection, root-causing, and mitigation of
the incidents. In comparison to prior works that focused
on one axis only, such correlation uncovers important in-
sights that provide new opportunities to improve reliability
of large-scale cloud services.
We first independently look at the three major stages of

an incident: detection, root-causing, and mitigation. Quick
detection of an incident is crucial to limit its impact and
usually such quick detection is achieved with automated
monitors. In our study, roughly half of the incidents were
successfully detected by existing monitors. In many cases,
monitors existed but failed to detect the incidents. We find
that simple measures such as collecting additional teleme-
try, fixing bugs in existing monitors, adjusting monitors’
thresholds, or adding monitors on existing telemetry can im-
prove effectiveness of automated monitoring by 50%, which
motivates future research on intelligently and dynamically
reconfiguring existing monitoring thresholds.
We then investigate the common root-causes behind the

incidents. While software bugs are a common root-cause, a
big portion (roughly half) of the incidents are caused due
to non-code related issues such as infrastructure capacity
issues, manual deployment errors, and expired certificates.
This shows the importance of our investigation of non-code
related root causes (unlike [21]). Based on our analysis, we
propose a taxonomy of common root-causes.

We then look at how incidents are mitigated. Interestingly,
a vast majority (> 90%) of the incidents are mitigated with-
out code-change2. Common mitigation strategies include
1https://www.microsoft.com/en-us/microsoft-teams
2Note thatmitigation is often a temporary measure to ensure that the service
continues to operate. Many incidents are later fixed with more permanent
measures such as code fix.

rollback (i.e., reverting service to an earlier version), infras-
tructure and configuration change, rebooting micro-services,
etc.

In order to limit the impact of an incident, it is important
that it is detected and mitigated quickly. However, some in-
cidents take much longer than others. We investigate the
root-causes behind such delays. Detection is delayed when
automated monitors fail to detect them, e.g., due to bugs in
the monitor, missing telemetry, and incorrect thresholds and
granularity. Mitigation is delayed mainly due to slow deploy-
ment of a fix (e.g., due to lack of on-call engineer’s (OCE’s)
permission to deploy), poor documentation/understanding
of applyingmitigation, and having humans in the loop. These
points to several techniques that can potentially expedite
detection and mitigation such as fine-tuning monitors and
adding additional testing, improving documentation and de-
ployment/coding practice, automated mitigation such as au-
tomatic certificate renewal, traffic-failover, auto scale, etc.
The above analyses of individual stages are useful; how-

ever theymiss important insights based on correlation among
different stages. For example, the above analyses do not an-
swer what types of root-causes are behind the incidents
that are the hardest to automatically detect and quickly mit-
igate. An important contribution of this work is a multi-
dimensional analysis that correlates various resolution stages
at different granularities. Our analysis makes several impor-
tant observations, including (1) incidents caused by software
bugs and external dependencies take longer to detect due
to poor monitoring. This highlights the need of practical
tools for fine-grained, in-situ system observability[15]. (2)
Incidents caused by some root-cause categories are quick to
mitigate after their root-cause categories are determined. For
example, incidents caused by configuration bugs and certifi-
cate expiration can be quickly mitigated by rollback and con-
figuration update, respectively. This suggests that the overall
mitigation time of incidents caused by these categories can
potentially be reduced with tools that, given an incident, can
quickly identify its coarse-grained root-cause category. (3)
Incidents caused by some root-causes are inherently hard to
monitor automatically (e.g., that requires monitoring global
states). This suggests that developers should invest more in
testing to uncover those root-cause categories before pro-
duction, thereby avoiding such incidents. In summary, we
make the following contributions in this paper.

(1) We analyze 152 high-severity production incidents
from a large-scale cloud service serving hundreds of
millions of customers. Our study differs from prior
works in several important ways:
• We consider incidents caused not only by software
bugs, but also by various other non-code-related root
causes.

127



How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

• We analyze not only the root-causes of the incidents,
but also how they are detected and mitigated and
why these tasks sometimes take undesirably long
time.

• We analyze reflections and lessons learnt by OCEs
to identify potential opportunities to improve relia-
bility of cloud services.

(2) We present a novel multi-dimensional analysis that
correlates different troubleshooting stages (detection,
root-causing, and mitigation) at different granularity.
Our analysis uncovers important insights that can be
valuable in improving reliability of large-scale cloud
services.

The rest of the paper is organized as follows: In Section 2, we
discuss the methodology of the empirical study. In Section
3, we investigate the root causes and mitigation steps of
the incidents. Section 4 discusses the delay in responding to
incidents, while in Section 5, we go over the lessons learnt
to make our services resilient to incidents. In Section 6, we
analyze patterns via multi-dimensional analysis. We discuss
the related work in Section 7 and then conclude the paper.

2 METHODOLOGY
2.1 Incident Selection in Our Study
Production incidents at Microsoft can be reported by users
(internal or external) or by automated system watchdogs
that continuously monitor system health telemetry data to
identify anomalous behaviors. Every production incident is
recorded in the incident database, along with information
such as incident, root cause and mitigation title and descrip-
tions, OCEs’ discussion, severity-level tag, work items issued
to developer teams (if any), the incident impact duration and
a set of "why" questions related to the incident response from
postmortems, e.g., why the detection, mitigation or engage-
ment was delayed, why the existing service resiliency failed
and what automation could be used to make the service re-
silient to similar future adverse scenarios, etc. We sample
and study 152 high severity incidents (severity 0, 1 and 2)
that happened in Microsoft-Teams during the 12 months
period from May 15, 2021 to May 15, 2022 that satisfies all
the following conditions:

• The incident severity level (2 or less) indicates that it
led to failure of some component of the service and
impacted several tenants and customers.

• The incident has been resolved or mitigated, and a
root cause description is associated with the incident
report.

• The incident has a complete postmortem report with
extensive information on detection and mitigation
steps.

The severity of incidents ranges from 0 to 4. Severity 3 and 4
incidents are non-critical, low impact and non-paging, and
the majority of such incidents are transient and auto miti-
gated. So, we considered only incidents with severity <= 2
(2% of total incidents). Among the 152 incidents, we observe
that 30% of incidents in our study have a severity level of
"0" or "1" (only one incident has a "0" severity level) and the
rest 70% of incidents have a severity level of "2". It should be
noted that not all incidents in our study impacted external
customers or users. Many of the incidents were reported by
internal users or automated watchdogs, and were resolved
before impacting external customers.

2.2 Categorization Strategy
In this work, we study high severity incidents to understand
not just what caused them, but also how they were mitigated,
the challenges faced, and strategies for optimal incident man-
agement in the future. Typically, an incident goes through
three main phases: (1) detection – incident is detected by
a service monitor or reported by a customer, (2) root cause
analysis – investigation by on-call engineers to identify the
root cause, and (3) mitigation – following procedures and
executing steps to mitigate the impact of the incident. To
holistically capture this process, we first identify six factors
to study (as shown in Table 1), that impact effective incident
management. For each of these factors, we then manually
populated a summarized description using the incident re-
port and the corresponding postmortem report. Using these
summaries, we develop a taxonomy of categories for each
of the six factors using an open coding approach [30]. We
then categorize each incident using these taxonomies and
analyze their distributions. Below we describe the procedure
followed in detail:

Table 1: Factors used to study incidents and their miti-
gation

Study Factor Description

Root Cause What issue caused the incident?
Mitigation Steps What steps were performed to

restore service health?
Detection Failure Why did monitoring not detect

the incident?
Mitigation Failure What challenges delayed inci-

dent mitigation?
Automation Opportuni-
ties

What automation can help im-
prove service resilience?

Lessons for Resiliency What lessons were learnt about
the service’s behavior and im-
proving resiliency?

128



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

Setup. We start by randomly sampling and splitting our 152
incident dataset into three subsets: (1) taxonomy set: 60 in-
cidents, (2) validation set: 30 incidents, and (3) test set: 62
incidents. Then, the first two authors of this work used an
open coding [30] approach to label the taxonomy set inde-
pendently. First, they assigned a category to each factor of
an incident that best described the summary. E.g., if the root
cause summary was “an incorrectly unset configuration to
fetch all logs”, one can categorize it as a configuration bug.
Subsequently, they examined the categories and settled on
a common taxonomy for each factor. Next, they labeled the
validation set to ensure no new categories arose and had
another discussion to define a more refined understanding
of each category. Lastly, they annotated the test set and used
Cohen’s kappa [9] to find the inter-annotator agreement
score. We observe near-perfect agreements for each of the
six taxonomies: Root Cause: 0.94, Mitigation: 0.945, Detection
Failure: 0.88, Mitigation Failure: 0.94, Automation Opportuni-
ties: 0.936, Lessons for Resiliency: 0.98. It should be noted that
we do not double count an incident into multiple categories.
For instance, if an incident is caused by multiple root causes,
then the disagreement is resolved by picking (1) the most
specific category that (2) first occured in the summary. Using
this approach, the annotators created a complete categorized
dataset of 152 incidents, which was used for all analyses
described in the following sections.

2.3 Threats to Validity
The results from our study should be interpreted with our
methodology and the properties of Microsoft-Teams in mind.
The insights generated from root cause, mitigation strategy
and automation opportunities may not replicate in other
cloud systems, as Microsoft uses a wide variety of effective
tools and techniques to proactively eliminate many types of
bugs, and simultaneously many automation tools are in op-
eration to automatically mitigate several types of incidents
before impacting customers. Our insights may not be gener-
alized across all the incidents in Microsoft that we have not
considered in our study and may not represent the behaviour
of other public cloud services. Even within Microsoft-Teams,
we have filtered out about 35% of recent high severity inci-
dents that did not have a complete postmortem report with
detailed root cause and mitigation description, which may
lead us to miss unprecedented incidents with limited infor-
mation.

3 WHAT CAUSES INCIDENTS AND HOW
WERE THEY MITIGATED?

In this section, we investigate what are the common cate-
gories of root causes behind high severity production inci-
dents, and how those incidents are resolved.

3.1 What are the Root Causes?
Each incident report contains a root cause title associated
with a detailed description. From these descriptions and
OCEs’ discussion, we identify the root cause and categorize
them into 7 types (see Figure 1).

RCA Category
Code Bug - 27.0 %
Dependency Failure - 16.4 %
Infrastructure - 15.8 %
Deployment Error - 13.2 %
Config Bug - 12.5 %
Database/Network - 10.5 %
Auth Failure - 4.6 %

Figure 1: Breakdown of root cause categories

Finding#1: While 40% incidents were root caused
to code or configuration bugs, a majority (60%) were
caused due to non-code related issues in infrastruc-
ture, deployment, and service dependencies.

Code bugs. Code related bugs are the majority contrib-
utor to cloud service incidents. We observe the following
code bugs in our study: (1) Code change or buggy features
(24.4% of total code bugs): These issues arise when develop-
ers update existing codebases or deploy a new feature that
passes existing test cases but contains faulty code. For exam-
ple, a recent code change might disable a feature for some
use cases because a predefined check erroneously failed, but
other scenarios require the feature. Another instance is a
code change introducing a buggy feature that did not sup-
port specific types of infrastructure or users. (2) Flags and
constants (24.4% of code bugs): These types of code bugs
arise when a feature flag is set wrongly (but passed the test-
ing due to inadequate scenario testing) that disable some of
the features to function properly. Another prevalent error
in this category arises when a threshold parameter value
for service health check or performance metric is set incor-
rectly. (3) Code dependency (19.5% of code bugs): Due to
inter-dependencies between different components in large
cloud services, a code change in one component can break
the functionality of dependent components or features. A
code dependency error usually occurs when a change in
one component fails to handle additional attributes in the
legacy code of a dependent component. (4) Datatype, vali-
dation, and exception handling (17.1% of code bugs): These
are typical errors developers introduce in the code either by
misunderstanding the datatype of a column in a database or
by using bad error handling logic. Validation errors occur
when a code change fails to validate tokens and certificates.
(5) Backward code compatibility (14.6% of code bugs): Back-
ward compatibility errors emerge when a code update breaks

129



How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

the existing feature. E.g., in an API code change where a blob
entry had been renamed but one place was missed which
prevented flow of information reaching to the user interface
side.
Infrastructure issues. Large cloud services are built

upon a complex hierarchical infrastructure comprising nodes,
clusters, and data centers that host tightly coupled resources,
including CPU, memory, and networks. Due to the contin-
uous operation of cloud systems, the performance of these
resources often deteriorates. We divide these infrastructure
degradation issues into the following categories: (1) CPU
capacity (33.3%): The CPU utilization drastically increased
because an infrastructure change reduced the CPU capacity
or a specific app or request is using a lot of CPU, which leads
to failure of a particular node/cluster and subsequently ser-
vice degradation. (2) Capacity issue due to high traffic (41.7%):
When a service (internal or external) receives unusually high
amount of requests or traffic, the existing infrastructure usu-
ally cannot handle the load, so it starts throttling and a high
latency or delay is observed. (3) Infrastructure scaling (16.7%):
In some cases, only a slice of production clusters is used for
operation, which causes over-utilization of the resources,
and therefore applications dependent on these resources fail.
(4) Infrastructure maintenance (8.3%): During infrastructure
maintenance or migration, the cache information is uninten-
tionally deleted, due to which endpoint users cannot connect
to the service.
Deployment errors. Operator mistakes during deploy-

ment are a common phenomenon in cloud services [25, 33].
In our study, we observe three types of deployment errors. (1)
Certificate management (55.0%): During deployment, opera-
tors either used old certificates that have already expired or
used incorrect certificates, due to which the service cannot
fetch correct authentication tokens. Another common issue
is certificate auto-rotation, which requires changing some
settings of the certificate issue policy, which is ignored dur-
ing deployment. (2) Faulty deployment & patching (25.0%):
Operators deployed a wrong patch that breaks some exist-
ing features or creates an incorrect dependency on another
component. E.g., someone wrongly deployed a patch that
made the UI point to a newer version of a dependent service
that didn’t exist yet. (3) Human Error (20.0%): This problem
emerges when an operator makes mistakes with manual
steps during the deployment.

Configuration bugs. To manage multiple tightly coupled
components in a cloud service, operators employ many con-
figuration settings that need to sync correctly to keep the
service running smoothly. Here, we observe that configu-
ration mismanagement is a common phenomenon. These
configuration management errors can be categorized into
three types: (1) Misconfiguration issue (47.4%): Operators
either make mistakes with the configuration setting or use

a bad configuration setting that does not follow standard
requirements, which leads to degradation of service quality
(traffic or latency increased) in specific regions or failure of
dependent services. (2) Configuration change (42.1%): When
a change is deployed to a configuration setting to adopt new
scenarios or use cases without carefully analyzing its de-
pendency, it leads to the failure of other components using
the same configuration parameters. (3) Configuration sync
(10.5%): If two or more flighting configuration settings oper-
ate within the service, then the updated configuration could
expire, and the old configuration is used that fails to fetch
the right tokens.

Dependency failures. In a large cloud system, multiple
services run simultaneously and share dependency among
each other. However, the OCEs for different services usu-
ally operate in silos. So, if the root cause comes from a de-
pendent service, then the OCEs escalate those issues to the
partner team. E.g., the small number of hardware issues that
affected Microsoft-Teams were classified as “dependency fail-
ure” since the issues are handled by Azure IaaS engineering
team that Microsoft-Teams depends on. We refer to those
problems as dependency failure and categorized them into
four types: (1) Version incompatibility (24.0%): When the
partner team deploys a new version or build, it can create
a backward code compatibility issue with other dependent
codes. The new source code version may also not be compat-
ible with other external features. (2) Service health (20.0%):
If the service quality of a dependent service degrades, the
down-streaming task also fails. (3) External code change
(28.0%): If the partner team or remote service introduces
an erroneous change, deploys a faulty package, or updates
some configuration setting that has a dependency on the
configuration of Microsoft-Teams, then the functionality of
Microsoft-Teams is impacted. (4) Feature dependency (28.0%):
The partner team rolls out a new feature or replaces some
content of an existing feature that is not recognized or synced
with the configuration used by the service.

Database or network problems. Although it overlaps
with Infrastructure issues, we created a separate category
as we identified significant number of database or network
related problems. Database or network problems are mostly
capacity related when the cloud system cannot handle higher
than normal or expected user request and throttle user’s re-
quest. Among these incidents, 25% are related to network
latency due to high round trip time (RTT) or latency spike
in a dependent service. Around 31% of incidents occur due
to network availability or connectivity issues due to which
thread services were taking longer to process request and
generating timeout errors. Other 44% incidents in this cat-
egory occurred due to two types of database related issues:
(1) 25% incidents happened due to outages of database that
impacted the file operations; and (2) 19% incidents happened

130



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

due to insufficient scaling of database capacity after user
request load increased.
Authentication failures. In a large-scale cloud service,

authentication failures are unavoidable. The authentication
errors emerge due to access policy change or race condition
between additional tokens rolled out during a new build de-
ployment. We can broadly categorize them into three types:
(1) Authorization issues (42.9%): users do not have permis-
sions to access the service, either the new deployment re-
quires more permission than the tested beta version, or users
presented multiple tokens and the strongest token is invalid;
(2) Certificate rotation (28.6%): due to rotation of new keys,
tokens or certificates, making calls to the service failed; and
(3) Authentication errors (28.6%): due to access policy change,
the authentication request to the service failed.

3.2 What are the Mitigation Steps?
In this section, we describe the common categories of mitiga-
tion strategies employed to tackle the high severity incidents.
Each incident and its corresponding postmortem report have
a title and a detailed description of the mitigation steps. From
these descriptions, OCEs’ discussion, and work items, we
identified the exact mitigation method, and categorized them
to 7 types (see Figure 2).

Mitigation Category
Rollback - 22.4 %
Infra Change - 21.1 %
External Fix - 15.8 %
Config Fix - 13.2 %
Ad-hoc Fix - 11.8 %
Code Fix - 7.9 %
Transient - 7.9 %

Figure 2: Breakdown of categories for mitigation steps

Finding#2: Although 40% incidents were caused
by code/configuration bugs, nearly 80% of incidents
were mitigated without a code or configuration fix.

Rollback. Facing time pressure, a common strategy to
mitigate the incidents is to revert the changes to an older
and stable version. This method is usually popular as it helps
to recover the service quickly. We observe three types of
rollback strategy in our study: (1) Rollback of code change
(35%): carried out by the developer team or external partner
team either by reverting the pull request or by reverting
the code change (e.g., fixing the flag values according to the
previous stable code); (2) Rollback of configuration change
(24%): manually reverting the bad configuration change that
was recently deployed; and (3) Rollback of new build (41%):
either by redeploying an older stable build or pinning the
users to the previous build that did not contain the issue.

Infrastructure change.Making an infrastructure change
is a frequently used mitigation method as it can quickly re-
cover the service, especially for capacity and throttling issues.
Among these infrastructural changes, about 44% of incidents
use traffic failover to another healthy service component.
The traffic rerouting could be accomplished in 3 ways: (1)
failover to another healthy node (16%); (2) failover to another
healthy cluster (9%); and (3) fail-over to another cloud region
(19%). Other infrastructural changes (56%) are accomplished
via node scaling or node reboot operations. Among these,
about 31% of the incidents are mitigated by upscaling the
node infrastructure to tackle overutilization problems, and
10% use node downscaling strategy (e.g., deleting incorrectly
provisioned nodes). The rest, 15% of infrastructural changes
are performed by restarting the faulty or unhealthy nodes
(sometimes after rerouting the traffic to another node).

Finding#3: Mitigation via roll back, infrastruc-
ture scaling, and traffic failover account for more
than 40% of incidents, indicating their popularity
for quick mitigation.

Configuration fix. To fix the majority of configuration
errors and authentication failures, operators manually fix
bugs in certificates or configuration files to restore the ser-
vice. A quarter of the incidents in this category are mitigated
by either creating a new certificate or rotating a renewed
certificate that syncs with existing requirements. 20% of the
incidents in this category are solved by changing and rede-
ploying the erroneous configuration files, and the other 20%
of incidents are mitigated by restoring the previous steady
configuration files. 25% of the incidents in this category are
solved by fixing the faulty features by performing one of the
following actions: (1) disabling the new feature, (2) reverting
the feature change, or (3) failover to other similar but stable
feature. The remaining 10% of the configuration fixes are
performed by syncing the dependent configuration files for
different services.
Code fix. Updating and fixing a buggy code with addi-

tional scenario testing is a typical and frequent resolution
methodology [21]. However, facing tight time constraints, a
relatively low number of incidents are resolved with a code
fix in our study. Among these incidents, about 42% are re-
solved with code change, i.e., by identifying the bug in the
code and rolling out a fix. If the issue is related to bad setting
of binary flags and constant values (magic number problem),
then they are solved by changing the magic numbers (17% of
total code fixes). 25% of the code fixes are implemented with
additional exception handling logic, and for the rest 17% of
incidents, an entire code module or abstract method is added
to include new resources (e.g., certificates) that are rolled out
recently.

131



How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

5

10

20
30
50
70

TTD
TTM

De
pe
nd
en
cy

Fa
ilu
re

Au
th
Fa
ilu
re

Co
de

Bu
g

Da
ta
ba
se
/N
et
wo

rk
In
fra
str
uc
tu
re

Co
nfi
g B

ug
De
pl
oy
m
en
t E
rro

r

0

1

2

3

4

Re
la
tiv

e
Ti
m
e

(a)

10

20
30
50
70
100
150
200 TTD

TTM

Ex
te
rn
al
Fi
x

Ro
llb
ac
k

Ad
-h
oc

Fi
x

In
fra

Ch
an
ge

Co
nfi
g
Fi
x

Co
de

Fi
x

Tr
an
sie
nt

0

2

4

6

8

Re
la
tiv

e
Ti
m
e

(b)
Figure 3: Average TTD and TTM for (a) different root cause categories; and (b) different categories of mitigation
steps. (Y-axis shows the normalized time with the median of time to detect or mitigate of all incidents as 1; for each category,
10% outliers on the high and low side are removed; Y-axis numbers beyond the black horizontal line are shown in log scale).

External fix. After examining the root causes carefully,
the internal OCEs might realize that the fix needs to be ex-
ecuted by the partner team – we refer to these resolution
methods as external fixes. Among the external fixes, 29% of
the cases, the partner team simply rolled back the recent
changes, including code/configuration change and deploy-
ment of a new build. For 17% of these external fixes, the
partner team identified the bug in code/configuration and
manually fixed them. For the rest 54% of external fixes, the
partner team executes a wide variety of mitigation steps
ranging from fixing metadata to rebooting nodes/clusters
to traffic rerouting, and sometimes sending notifications to
customer/users asking for disabling unsupported plugins.

Finding#4: Even among incidents triaged to exter-
nal teams, only a minority 17% of incidents were
mitigated using a code/configuration fix.

Ad-hoc fix.When the root cause is complex and OCEs are
not familiar with the issue, they execute a series of ad-hoc
commands. Depending on the outcome of previous steps,
further mitigation steps are taken. These types of fixes are
called "Hotfix", which could be run by the internal OCEs or
escalated to a partner team. E.g., a "Hotfix" was rolled out by
the authentication service to use correct certificate or update
certificate public keys.
Transient. These incidents are triggered by automated

watchdogs if certain health check metrics crossed a pre-
defined threshold. We refer to these incidents as false alarms.
When infrastructural conditions stabilize (e.g., network con-
nectivity restored), these incidents get automatically miti-
gated and the system recovers. Specifically, these incidents
are auto mitigated for mainly for 3 reasons: (a) Auto healing
of infrastructure (e.g., network recovered); (b) Updating or

restarting the app from the user side resolved the problem;
or (c) Service health metric automatically recovered.

4 WHAT CAUSES DELAY IN RESPONSE?
In this section, we analyze the response times in terms of time
to detect (TTD) and time tomitigate (TTM) to understand the
critical root causes andmitigation types. TTM is computed as
the difference between the timewhen an incident is mitigated
and the time when an incident is detected. Furthermore, we
analyze the common reasons behind detection andmitigation
delays by collecting information from the OCEs’ comments.

4.1 Response Time Analysis
Figure 3(a) compares the normalized TTD and TTM among
incidents caused by different types of root causes, with the
median of union of TTD and TTM for all the incidents as "1".
In addition, for each category of root causes, we removed
10% of outliers from high and low side. For each category, we
show the average TTD and TTM along with standard error
(denoted by red capped line). The detection and mitigation
time for both code bugs and dependency failure is signifi-
cantly higher than other root cause types. For authentication
failures and database/network related issues, the detection
process was quick but the mitigation time was relatively
longer. On the other hand, for deployment errors, detection
took longer than the mitigation time.

Finding#5: The time-to-detect code bugs and de-
pendency failures is significantly higher than other
root causes, indicating inherent difficulties in moni-
toring such incidents.

132



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

Figure 3(b) compares the normalized TTD and TTMamong
incidents caused by different types of resolution steps. Simi-
lar to the analysis with root cause, we removed 10% of outlier
incidents for this experiment. As expected, the detection and
mitigation times for the transient and infrastructural change
category were quick. Similarly, the mitigation times for in-
cidents with rollback as a fix were low. Interestingly, the
detection and mitigation times for the external fix were sig-
nificantly low as most of the mitigation steps were either
rollback or infrastructural changes. As code or configuration
fixes require manual effort, the detection and mitigation time
were longer for these incidents. Similarly, as expected, the
ad-hoc fixes took longer time to mitigate the incidents in
comparison to rollback or infrastructural changes.

Finding#6:Manually fixing code and configuration
take significantly higher time-to-mitigate, when
compared to rolling back changes. This supports
the popularity of the latter method for mitigation.

4.2 Reasons for Delay in Detection
In this section, we discuss how the incidents are detected
and why existing watchdogs failed to detect all incidents
automatically.

4.2.1 How incidents are detected? Unlike traditional
software systems, we observe that about 55% of the inci-
dents were detected by the automated watchdogs. These au-
tomated watchdogs are deployed by developers of Microsoft
to monitor system health data (e.g., latency, CPU usage, mem-
ory usage) continuously and fire alarm once a metric goes
beyond configured healthy threshold. In the next section
we discuss the key reasons for which existing watchdogs
failed to detect the rest of the incidents. Among other 45%
incidents, 29% incidents are reported by the external users
or customers, and 10% are identified by the partner teams
within Microsoft. The remaining 6% incidents are detected
by the Microsoft-Teams’s service team itself.

4.2.2 Why automated watchdogs failed? We now study
the reasons behind a detection failure from OCEs’ perspec-
tive. Incident postmortem reports mostly contain an expla-
nation for the detection failure if the incident was manually
reported by an internal or external customer. From these
descriptions, we identified the key reason behind a detection
failure and categorized them into 7 types (see Figure 4).
Monitor bugs. In Microsoft, several automated watch-

dogs are deployed that continuously monitor various perfor-
mance metrics. In most cases, the operators set static rules
that if performance metrics crossed a predefined threshold,
an alert is triggered with the details of anomalous health
data. A quarter of monitor issues arise as the overall failure

Detection Failure Category
Not Failed - 52.0 %
Unclear - 11.8 %
Monitor Bug - 10.5 %
No Monitors - 8.6 %
Telemetry Coverage - 8.6 %
Cannot Detect - 4.6 %
External Effect - 4.0 %

Figure 4: Breakdown of categories for detection failure

rate was below a high alert threshold. Another quarter of
monitor bugs are related to misdiagnosis of the severity level
of an incident by the watchdog. Rest 50% of the monitor bugs
appeared because testing failed to identify that monitor had
buggy features or bad configuration settings.

Telemetry coverage. Albeit having an automated watch-
dog for a particular component, the detection failure occurs
as the watchdog does not record some specific telemetry data.
We broadly categorized these telemetry coverage failures
into three buckets: (1) environment related (31%): additional
telemetry data is required for specific type of cloud envi-
ronment; (2) service health related (38%): additional alerts
for resource utilization metrics (e.g., high CPU usage or ser-
vice down alerts) are needed; and (3) scenario related (31%):
additional scenario-based alerts (e.g., HTTP scenarios, or
telemetry data for a specific error code) are missing.
External effect or hard to detect. If the incident is

caused due to dependency on the partner team, and the
detection was delayed because of partner application failed
to detect the anomaly from their side, we refer to them as
"External Effect". E.g., the monitors all behaved as expected
from the service side, but authentication service needs to add
more monitors specifically for partner service latency. On the
other hand, if the incident was detected by the customers or
partner team through manual scenario testing (e.g., a deploy-
ment issue), we refer to them as "Cannot Detect" category,
as these incidents are hard to recognize by the automated
watchdogs.

No watchdogs. Albeit having a large number of watch-
dogs, we encounter incidents for which no automated watch-
dog was present to detect anomalies for a relevant perfor-
mance metric. In some cases, the incident was not detected
as the monitor was missing on the partner application side.
Not failed or Unclear. More than half of the incidents

were successfully triggered by the existing automated watch-
dogs. If the OCEs left delay failure field empty in postmortem,
we refer to them as "Unclear" category.

4.2.3 Detection failure time analysis. In Figure 5(a), we
demonstrate the average time to detect an incident for dif-
ferent types of detection failures along with standard error,
after removing 10% of outliers from high and low side. The
detection time was highest for the incidents where failure is

133



How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

10

20
30

50
70

Un
cle
ar

No
t F
ail
ed

No
M
on
ito
rs

Ca
nn
ot
De
te
ct

Te
lem

et
ry
Co
ve
ra
ge

Ex
te
rn
al
Eff
ec
t

M
on
ito
r B

ug

0

2

4

6

8

Re
la
tiv

e
Ti
m
e

(a)

10

20
30

50

80

4 × 101

6 × 101

Ex
te
rn
al
De
pe
nd
en
cy

No
t F
ail
ed

Co
m
pl
ex

Ro
ot
Ca
us
e

M
an
ua
l E
ffo
rt

Do
cu
m
en
ts-
Pr
oc
ed
ur
es

De
pl
oy
m
en
t D

ela
y

Un
cle
ar

0

2

4

6

8

Re
la
tiv

e
Ti
m
e

(b)
Figure 5: (a) Detection time for different types of detection failure; and (b) Mitigation time for different types of
mitigation delay. (Y-axis shows the normalized time with the median of time to detect or mitigate of all incidents as 1; for
each category, 10% outliers on the high and low side are removed; Y-axis numbers beyond the black horizontal line are shown
in log scale).

complex and hard to recognize, albeit having a low propor-
tion of such incidents. As expected, the detection times were
significantly high in the absence of automated watchdogs,
or where the monitors collect a limited amount of telemetry
data.

Finding#7: ≈17% of incidents either lacked moni-
tors or telemetry coverage, both of which result in
significant detection delays.

4.3 Reasons for Delay in Mitigation
Incident postmortem reports contain an explanation for mit-
igation failure if the total impact time after detection is rea-
sonably high. From these descriptions, we identified the key
reason behind a mitigation failure and categorized them into
7 types (see Figure 6).

Mitigation Failure Category
Not Failed - 27.6 %
Unclear - 27.6 %
Documents-Procedures - 10.5 %
Deployment Delay - 10.5 %
Manual Effort - 9.2 %
Complex Root Cause - 7.2 %
External Dependency - 7.2 %

Figure 6: Distribution of mitigation failures

Deployment delay. Once a fix is deployed, it took longer
time for the service to recover. The deployment delay occurs
for three reasons: (1) external manual approval (25%): the
OCEs needed additional approvals to execute a fix or change;
(1) permission issues (25%): assigned OCEs did not have
required permission to access the required log files or to

disable the faulty features; and (3) slow change in the system
(50%): it took longer time for the configuration change or
node scaling or rolling out of a "hotfix" to take effect.
Documentation and procedures. Mitigation process

was delayed because of poor documentations or infrastruc-
tural setup, which can be categorized into three broad types:
(1) OCE knowledge gap (19%): OCEs have not acted swiftly
when the severity level was low or the similar incident resolu-
tion method was not communicated among OCEs properly;
(2) Troubleshooting guide (TSG) quality (50%): OCEs fol-
lowed existing TSGs to resolve the incident, but could not
find clear and specific recommendation like when to declare
an outage, or which team to engage for code change; and
(3) Poor infrastructure setup (31%): proper setup was not
available for auto-scaling of nodes, auto-failover of traffic,
or automatically rollback codes in a specific environment.

Complex root Cause.Debugging the problem and identi-
fying the actual root cause was a painful and lengthy process.
We observe three reasons for delay in root cause identifica-
tion: (1) rare occurrence (18%): either the problem came from
a new feature or that particular scenario is infrequent; (2)
no telemetry information (27%): it was difficult to capture
scope of the problem as required performance metrics were
not logged; and (3) debugging problem (55%): it took time to
figure out bugs in code change.

Finding#8:While complex root causes can affect
time-to-mitigate, 30% of incidents had mitigation
delays even after identifying the root cause due
to poor documentation, procedures, and manual
deployment steps.

134



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

Manual effort or external dependency.Mitigation pro-
cess was delayed because it involves manual steps or errors
in three ways: (1) OCE avalanche (14%): multiple OCEs simul-
taneously executed several steps without having a proper
communication; (2) misdiagnosis (29%): the problem was
not properly diagnosed initially, which leads to delay in exe-
cuting wrong resolution methods; and (3) deployment and
configuration errors (36%): it requires manual effort to scale
the infrastructure or renew certificates. Another challenge
faced by the internal OCEs when there was communication
gap with the partner team and engagement was delayed,
which we refer to as as "External dependency".

Not failed or Unclear. If the mitigation process was
quick as per the OCEs’ expectation, then we refer to them as
"Not Failed" category. If the OCEs indicated that they do not
understand the reasons behind the delay in the mitigation
process, we refer to them as "Unclear" category.

4.3.1 Mitigation failure time analysis. In Figure 5(b),
we compare the average time to mitigate an incident for
different types of mitigation failures along with standard
error, after removing 10% of outliers from high and low side.
The incidents with complex root cause took longest time to
mitigate, as the OCEs’ do not have proper documentation
or trouble shooting guides to resolve these incidents. As
expected, the mitigation took longer if there are deployment
related delays. Mitigation also gets delayed if any manual
step is involved in the process.

5 LESSONS LEARNT FOR RESILIENCY
In this section, we discuss the potential automation opportu-
nities to make the service resilient against future adversarial
scenarios and the lessons learnt by the OCEs while tackling
high severity incidents.

5.1 Automation Opportunities for Future
In each incident postmortem report, OCEs provide their ex-
pertise opinion on what automation could be added in the
service to make them resilient to similar failures in the future.
By reading these descriptions, we categorize these automa-
tion strategies into 6 types (see Figure 7).

Automation Category
Unclear - 32.2 %
Manual Test - 25.7 %
None - 15.1 %
Auto Alert/Triage - 15.1 %
Config Test - 5.9 %
Auto Deployment - 5.9 %

Figure 7: Potential automation opportunities

Manual and configuration test.Majority of the automa-
tion suggestions provided by the OCEs are related to im-
prove a variety of testing methodologies: (1) performance
test (12.8%): use chaos engineering techniques for load or
stress testing; system test (23.1%): end-to-end testing to verify
system functionality; scenario test (30.8%): test with corner
and infrequent cases for specific type of users or deployment
environment; validation test (12.8%): new tests to eliminate
authentication ambiguity; integration test (7.7%): to identify
partner dependency failure; and unit test (12.8%): new tests to
verify few features or backward code compatibility. Another
category of testing suggestion was related to configuration
test which indicates that all boundary conditions should be
tested before rolling out any configuration change.

Automated alert/triage. To eliminate detection failures,
OCEs suggested three types of methods to automate the
alerts or triaging process: (1) fine-tuning monitors (30%):
properly tune the threshold parameters for the monitors so
that it fire alerts sooner when the impact is low, or add new
performance tools and anomaly detection rule, e.g., setting
up an alert about certificate being close to expiry; (2) improve
health checks (52%): need to add more monitors and increase
telemetry coverage for existing monitors, e.g., add telemetry
data for latency or add new alert system for service worker
activation; and (3) automated triaging (18%): set up automatic
escalation method between OCEs and partner team.

Finding#9: Improving testing was a popular choice
for automation opportunities, over monitoring, in-
dicating a need to reduce incidents by identifying
issues before they reach production services.

Automated deployment.We observe two types of au-
tomation suggestion for the deployment: (1) Automation of
failover (44%): build automation to automatically swap the
traffic manager when this issue is detected; and (2) auto-
mated release (56%): fully automate the release pipeline to
avoid any human intervention that will eliminate delay or
error in manual steps.
Unclear or no automation required. In this scenario,

OCEs mentioned that additional automation will not be help-
ful for service resiliency. We broadly divide these comments
into three types: (1) Adequate automation exists (30%): ei-
ther enough monitors and test cases are already in place, or
additional automation will not be able to catch the specific
incident; (2) Automation is hard (18%): if it is a production
network or capacity issue, then setting up monitors or test
cases is very challenging and; (3) Automation not applicable
(52%): the problem lies in partner applications. If OCEs indi-
cated that they are not sure about any potential automation
opportunities that can tackle a particular incident, we refer
to them as "Unclear" category.

135



How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

5.2 Discussion on Lessons Learnt for Future
Similar to automation suggestions, in each incident post-
mortem report, OCEs provide their perspective on what is
learnt for the future from the incident. By reading these de-
scriptions, we categorize these future lessons learnt into 7
types (see Figure 8).

Lessons Learnt Category
Unclear - 37.5 %
Improve Monitoring - 15.8 %
Behavioral Change - 11.8 %
External Coordination - 10.5 %
Improve Testing - 9.9 %
Documents/Training - 7.9 %
Auto Mitigation - 6.6 %

Figure 8: Breakdown of categories for lessons learnt

Improve monitoring and testing. In the postmortem,
the OCEs provide suggestions to improve the existing mon-
itoring system and testing process. For monitoring, we ob-
serve 3 types of suggestions: (1) Add telemetry (54%): update
existing watchdogs to proactively track growth in perfor-
mance and memory usage to detect anomalies for some spe-
cific scenarios, or create new watchdogs to fire alerts for
misconfiguration and production release problems; (2) Fix
alerts (33%): fix monitor bugs by revisiting the threshold
parameters; and (3) Better dashboard (13%): enhance mon-
itoring dashboard to track low volume scenarios. Similar
to automated testing suggestions mentioned in Section 5.1,
several types of testing lessons ranging from monitor test-
ing (13%) to system testing (33%) to configuration testing
(20%) to scenario testing (20%). We observe a new type called
version testing (27%), where the suggestion was to have a
strong resiliency with the legacy codebase by running proper
test cases for compatibility check while upgrading to a new
version.

Behavioral change. OCEs mentioned a variety of be-
havioural changes in incident management and engineering
practices to make the service resilient. We broadly catego-
rized them into 4 types: (1) Deployment practice (33%): oper-
ators should exercise caution while rolling out configuration
change or certificates in sensitive environment; (2) Program-
ming practice (34%): developers need to follow caution while
turning on flags in some scenario, and they should carefully
block all unsupported scenarios to avoid customer impact;
(3) RCA and mitigation practice (22%): OCEs should care-
fully check that they have right permissions and knowledge
before executing any rollback or restart operation in sensi-
tive environments; and (4) Monitoring practice (11%): OCEs
should pay attention in health dashboard and re-evaluate
capacity measure before changing incident severity level.
Training and documentation. While solving an inci-

dent, OCEs often employ existing documentations that were

used to solve similar incidents. We find suggestions for im-
proving these documentations in four ways: (1) better TSG
(50%)): existing TSGs should include details about specific
telemetry or test process, and they should be carefully re-
viewed after major changes; (2) better postmortems (17%):
eliminate dependency among postmortems to quickly get
insights from historical similar incident postmortems; and
(3) better API documentation (33%): improve documents for
certain existing tools, their repair items and missing test
coverage, to help the partner teams.

Finding#10: While improving monitoring/testing
accounts for majority of the lessons learnt, a signif-
icant ≈20% feedback indicated improved documen-
tation, training, and practices for better incident
management and service resiliency.

Automated mitigation. For many of the infrastructure
and authentication failure related incidents, the suggestion
was to eliminate human intervention and automate the entire
mitigation pipeline. Half of these suggestions were related
to certificate management: (1) Certificate renewal (30%): cer-
tificate rotations and renewals should be fully automated
without any manual intervention; and (2) Audit (20%): cer-
tificate updates, testing and validation should be tracked and
audited periodically. Other half of these suggestions were re-
lated to infrastructure management: (1) traffic failover (20%):
automate traffic manager to health check backend nodes and
reroute traffic after removing unhealthy nodes; and (2) node
scaling (30%): re-evaluate capacity numbers frequent and set
up automated scaling mechanism for faster mitigation.

External coordination. For incidents related to features
that have dependency on external or partner team, we need
to ensure that there is an explicit coordination mechanism
and partner team properly acknowledge mitigation steps.
We observe two specific lessons for this category: (1) better
coordination (56%): establish a clear communication channel
with partners who will be impacted when rolling out break-
ing changes, or eliminate dependency where applicable (e.g.,
removing authentication service dependency and directly
fetching client tokens); and (2) better escalation (44%): need
better escalation mechanism to proactively reach the partner
team (e.g., by declaring outage early or designing automatic
escalation method).

6 MULTI-DIMENSIONAL INCIDENT
ANALYSIS

In the previous sections, we analyze high severity incidents
from various individual dimensions such as Root Causes,
Mitigation Strategies, and more. While this single-axis view
unveils frequently used approaches and improvement op-
portunities, incident management is usually extraordinarily

136



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

N
ot

Fa
ile
d

M
on

ito
r B

ug
Te
le
m
et
ry

Co
ve
ra
ge

Ex
te
rn
al
Eff

ec
t

Ca
nn

ot
D
et
ec
t

Un
cl
ea
r

N
o
M
on

ito
rs

Detection Failures

0

25

50

75

100

%
Ro

ot
Ca

us
es

Deployment Error
Auth Failure
Config Bug
Infrastructure
Dependency Failure
Database/Network
Code Bug

Figure 9: Detection Failures vs Root Causes

complex. A single cloud service incident can involve multiple
components, dependencies, teams, and on-call engineers. In
such a setting, engineers handling alerts usually have a par-
tial view of the big picture (fog-of-war) [19] and hence, react
to the root cause with strategies that provide the quickest
mitigation.
Example: Let’s consider a customer-reported incident

attributed to a recent code change. While the code change
was bug-free, it exposed an incompatibility bug due to a
missing null parameter check. However, alerts did not fire
due to an unrelated bug in the corresponding monitors of
the service. This resulted in the code being deployed beyond
test rings to production rings. Given this, on-call engineers
could not rollback the code change and instead applied a
hot-fix to mitigate the issue.
As seen, this is an involved decision-making procedure,

connecting factors such as root cause, dependencies, detec-
tion failures, and more to decide the mitigation steps. To
understand such complex aspects, in this section, we look at
incidents from a multi-dimensional view by analyzing the
distribution of correlated factors. First, we use the Chi-Square
test [26] to determine whether the association between two
qualitative factors (say Root Cause and Mitigation) is sta-
tistically significant. Here, we set the null hypothesis (𝐻0)
as the independence of two factors. We then reject 𝐻0 (i.e.
dependent factors) if the p-value of 𝜒2 <= 𝛼 , where 𝛼 is a
chosen significance level of 0.05 (95% confidence interval).
With this, we identify only the dependent factors and analyze
the distribution of incidents against them. Below we discuss
insights from some of our analyses and their implications
(�) for industry and future research.
Detection Failure and Root cause. In Figure 9, we look
at what Root Causes are associated with various kinds of
Detection Failures. Here, we observe that a notable 70% of
incidents where no monitors existed for the scenario were
related to code bugs. Similarly, a significant 54% of incidents
with poor telemetry coverage were also root caused to code
bugs. This indicates an inherent difficulty in monitoring and

Co
de

Bu
g

D
at
ab
as
e/
N
et
w
or
k

D
ep
en
de
nc
y
Fa
ilu

re
Au

th
Fa
ilu

re
Co

nfi
g
Bu

g
D
ep
lo
ym

en
t E

rr
or

In
fr
as
tr
uc
tu
re

Root Causes

0

20

40

60

80

100

%
M
iti
ga
tio

n
St
ra
te
gy Rollback

Config Fix
Transient
Infra Change
Code Fix
External Fix
Ad-hoc Fix

Figure 10: Root Causes vs Mitigation Strategies

detecting service health regressions due to bugs introduced
via code changes. �: Therefore, it seems essential to signifi-
cantly test code changes before rolling out, than depend on
monitoring to maintain service reliability.

Finding#11: 70% of incidents with no monitors
were root caused to code bugs, i.e., it is inherently
difficult to monitor regressions introduced due to
code changes.⇒ For code changes, we should im-
prove testing rather than relying on monitoring.

Additionally, we find incidents that monitors cannot de-
tect today because they involve dependencies outside the
scope of the service. Here, 42% of incidents that monitors
cannot detect were associated with failures in dependency
services. This indicates issues with today’s monitors being
localized to a service’s code base, i.e., lacking a global view.
�: For large-scale clouds, future monitors will need to cap-
ture dependencies across services and propagate telemetry
to all interacting services for faster triaging and root cause
analysis. For example, related monitors can be connected
and pass messages about failing services to each other.

Finding#12: 42% of incidents that cannot be de-
tected by monitoring today, were associated with
dependency failures ⇒ There is a need to intro-
duce/increase monitoring coverage and observabil-
ity across related services.

Root Cause and Mitigation. In Figure 10 we analyze what
Mitigation Strategies were used for each type of Root Cause.
As shown, rollback- which involves reverting a build, re-
lease, code change, etc.- is one of the most popular mitigation
strategies. Particularly, we observe 47% of configuration bugs
mitigated with a rollback, when compared to a lesser 21%
mitigated with an actual configuration fix. From Figure 3(b),
we can attribute this to a rollback taking significantly less
time for mitigation than a configuration fix. However, it also
suggests that configuration bugs are predominantly seen in

137



How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

N
ot

Fa
ile
d

M
an
ua
l E

ffo
rt

Un
cl
ea
r

D
ep
lo
ym

en
t D

el
ay

Co
m
pl
ex

Ro
ot

Ca
us
e

Ex
te
rn
al
D
ep
en
de
nc
y

D
oc
um

en
ts
-P
ro
ce
du

re
s

Mitigation Failures

0

20

40

60

80

100

%
Le
ss
on

sL
ea
rn
t Improve Monitoring

Documents/Training
Improve Testing
Unclear
Auto Management
External Coordination
Behavioral Change

Figure 11: Mitigation Failures vs Lessons Learnt

updates to previously correct configurations, rather than con-
figurations that unexpectedly start failing in production due
to external changes such as workload, traffic, and dependen-
cies. �: Hence, a large portion of misconfigurations can be
identified if tested. A de facto approach to handling miscon-
figurations is configuration validation – checking specified
properties of configuration values. While useful, it is discon-
nected from the dynamic logic of the service’s source code
[32]. Another solution is traditional software testing, which
is not customized to handle all possible configuration values
and explore combinations of multiple configurations [32].
Therefore, we need to develop more systematic methods for
configuration testing, that not just validate values but also
test syntactically/semantically valid configuration changes
that may result in unexpected service behaviour [31].

Finding#13: 47% of configuration bugs mitigated
with a rollback compared to a lesser 21% mitigated
with a configuration fix; i.e., A large portion of mis-
configurations are due to recent changes ⇒ They
can be identified by rigorous configuration testing.

Also, we find that a significant 30% of incidents with de-
ployment errors were mitigated with a configuration fix.
These incidents mainly deal with deployed service certifi-
cates expiring and are mitigated by a configuration update
with a new certificate version.�: Here, we believe that better
monitoring for certificate expiry and mechanisms for auto-
renewal of certificates can improve reliability. Lastly, we
observe that for 50% of database and network failures, client
services depend on the external team to fix the failing infras-
tructure.�: While this is effective, client service reliability
can be further improved with auto-failover mechanisms to
use alternative networks or database replicas configured
during deployment.
Mitigation Failure and Lessons. Next, we look at the
Lessons learnt by on-call engineers that could resolve var-
ious Mitigation Failures faced. From Figure 11, we see that

in a notable 21% cases, improving Documentation and OCE
training can reduce the manual effort for incident mitigation.
Prior work has shown that such documents, especially trou-
bleshooting guides (TSGs), have critical quality issues (like
completeness, correctness, broken links, and readability) and
are not well maintained [1, 29]. Also, TSGs frequently aid in
mitigating incidents for which mitigation steps are known
apriori – however, the steps are still manual. �: Here, we
believe two methods can help: (1) Quality Testing: frequently
monitoring the quality of these documents using various
metrics such as readability, dwell time, time-to-mitigate, up-
to-dateness, etc., and (2) Automation: automating these man-
ual TSGs into workflows (like jupyter notebooks) that can
be executed with minimal intervention.

Finding#14: 21% of incidents where manual effort
delayed mitigation, expected improvements in doc-
umentation and training. ⇒ Just like with source
code, we need to design new metrics and methods
to monitor documentation quality. Also, automat-
ing repeating mitigation tasks can reduce manual
effort and on-call fatigue.

Correspondingly, for mitigation failures due to poor Doc-
umentation and Procedures, we find that 25% expected im-
provements in monitoring. The most crucial issue we find
here is that they can lack coverage – they don’t capture de-
pendency failures or have high thresholds and hence miss
detection while the impact is low.�: As previously stated,
we can improve this by providing monitors global views
across service dependencies and introducing clear proce-
dures for frequently reviewing monitor thresholds. Lastly,
as shown in Figure 5, even after identifying the root cause
and mitigation steps, deployment delays due to manual steps
result in significantly high time-to-mitigate. �: To alleviate
deployment delays, as in Figure 11, we see that in 25% cases,
some automated mitigation steps for deployed services (e.g.,
certificate-rotation, traffic-failover, auto-scaling, etc.) can sig-
nificantly help. As a result, this motivates future research
on self-healing clouds to dynamically manage infrastructure
on workload changes and other deployment activities like
certificate management. A key aspect to focus on here will
be connecting service monitoring to automated workflows
that perform infrastructure and deployment actions.

Finding#15: 25% of incidents where mitigation de-
lay was due to manual deployment steps, expected
automated mitigation steps to manage service in-
frastructure (like traffic-failover, node reboot, and
auto-scaling).

Detection Failures and Automation. In Figure 12, we look
at the distribution of Automation Opportunities identified

138



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

N
o
M
on

ito
rs

Te
le
m
et
ry

Co
ve
ra
ge

N
ot

Fa
ile
d

Ca
nn

ot
D
et
ec
t

M
on

ito
r B

ug
Ex

te
rn
al
Eff

ec
t

Un
cl
ea
r

Detection Failures

0

25

50

75

100

%
A
ut
om

at
io
n
O
pp

or
tu
ni
tie

s

Manual Test
Config Test
Auto Deployment
None
Unclear
Auto Alert/Triage

Figure 12: Detection Failures vs Automation Opportu-
nities

by on-call engineers against Detection Failures that affected
proactive detection of incidents. Here, a noteworthy 57%
of incidents that monitors cannot detect were associated
with improved manual testing over improving automated
alerts (23%). Similarly, a significant 53% of incidents that
had no monitors or lacked telemetry coverage, were also
linked with improved manual testing. �: This shows that
on-call engineers find it beneficial to practice a “Shift Left”
behavior that identifies incident resulting bugs before they
reach production. Hence, we believe that automated testing
tools can considerably help in reducing the burden of manual
testing and increasing the usage of testing over monitoring
for cloud reliability.

Finding#16: In more than 50% of incidents that
monitors could not detect, OCEs expected an im-
provement in manual testing over automated alerts
(23%).⇒ Strongly enforcing that a “Shift Left” prac-
tice with automated tools to aid testing can reduce
on-call effort and expenses – both customer impact
and engineering.

7 RELATEDWORK
Empirical studies of incidents - There has been signifi-
cant amount of prior work which has focused on analysis
of incidents and outages in production systems. The prior
work can be categorized into: (a) studies focused on partic-
ular type of production issues [2, 5, 11, 18, 22, 36] and, (b)
study of production issues in specific services or systems
[4, 10, 13, 14, 21, 34, 37]. In the first category, prior work has
studied a large number of failure types such as scalability
bugs [17], network partitioning failures [2], crash recovery
bugs [11], exception handling [5], upgrade failures [36], par-
tial failures [22] and task scheduling failures [8]. Alquraan
et al. [2] analyzed over 130 failure reports from 25 widely
used systems to characterize the impact and root causes of

network partitioning failures. Similarly, Gao et al. [11] stud-
ied 103 bugs from open-source distributed systems which
were caused by node crash recovery issues. However, our
work is most closely related to the second category since we
do a holistic analysis and characterization of 152 production
issues which occurred over a span of a year. Liu et al. [21]
analyzed production incidents from Microsoft Azure to an-
alyze the type of software bugs and the mitigation process
for 112 high severity incidents. Yuan et al. [34] studied 198
user reported failures in big-data systems to understand why
catastrophic failures are caused and how they can be pre-
vented. Martino et al. [10] characterize failures of a business
data processing platform by using system’s event log data.
Unlike prior work, we do an end-to-end analysis and charac-
terization of all type of production incidents in a web-scale
service used by hundreds of millions of users. We study not
only the root cause of incidents but also how they were de-
tected, mitigated and the current gaps. Lastly, we do a novel
correlation across these dimensions to uncover patterns and
useful insights for improving incident management.
Incident management - Incident management has re-

cently become a popular research direction in the software
engineering community. There are significant challenges in
incident management such as automated triaging [6, 7], di-
agnosis [3, 23, 24], safe deployment [20] and mitigation [16].
Chen et al. [6] conducted a large-scale empirical study which
showed that incidents are frequently mis-triaged and it can
lead to a delay of up to 10X with significant customer and
revenue impact. Jiang et al. [16] proposed a system for rec-
ommending troubleshooting guides for incidents to reduce
the mitigation time. Recent efforts [27, 28] have also focused
on structured knowledge extraction from incident reports.
Our work is complimentary to these prior works and the
insights and learnings from this work will motivate future
research into improving existing diagnosis tools and build
new tools and techniques for specific categories of incidents.

8 CONCLUSION
This paper presents a comprehensive study about root causes,
detection, and mitigation strategies of unprecedented high
severity incidents in a cloud service serving hundreds of
millions of customers. By analyzing reflections and lessons
learnt by the OCEs, we identified potential automation oppor-
tunities at different granularity of root causes and mitigation
strategies to improve resiliency of cloud services. Finally,
our multi-dimensional correlation analysis between differ-
ent stages of incident life-cycle uncovers important insights
for improving reliability of large cloud services, which will
provide guidance for future academic and industrial research
in the field of incident management.

139



How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud Service SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno,

Gabriele Bavota, Michele Lanza, and David C Shepherd. 2020. Software
documentation: the practitioners’ perspective. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 590–601.

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer
Al-Kiswany. 2018. An Analysis of {Network-Partitioning} Failures
in Cloud Systems. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 51–68.

[3] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier
Midy, and Mathru Janakiraman. 2020. DeCaf: Diagnosing and Triaging
Performance Issues in Large-Scale Cloud Services. In 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP).

[4] Ayush Bhardwaj, Zhenyu Zhou, and Theophilus A Benson. 2021. A
Comprehensive Study of Bugs in Software Defined Networks. In 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 101–115.

[5] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. 2019.
Understanding exception-related bugs in large-scale cloud systems. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 339–351.

[6] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y.
Dang, and D. Zhang. 2019. An Empirical Investigation of Incident
Triage for Online Service Systems. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). 111–120.

[7] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and
D. Zhang. 2019. Continuous Incident Triage for Large-Scale Online
Service Systems. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 364–375.

[8] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. 2014. Failure
analysis of jobs in compute clouds: A google cluster case study. In 2014
IEEE 25th International Symposium on Software Reliability Engineering.
IEEE, 167–177.

[9] Jacob Cohen. 1960. A coefficient of agreement for nominal scales.
Educational and psychological measurement 20, 1 (1960), 37–46.

[10] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Geetika
Goel, Santonu Sarkar, and Rajeshwari Ganesan. 2014. Characterization
of operational failures from a business data processing saas platform. In
Companion Proceedings of the 36th International Conference on Software
Engineering. 195–204.

[11] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun
Wei, Ruirui Huang, Li Zhou, and Yongming Wu. 2018. An empirical
study on crash recovery bugs in large-scale distributed systems. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. 539–550.

[12] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J Eliazar,
Agung Laksono, Jeffrey F Lukman, Vincentius Martin, et al. 2014. What
bugs live in the cloud? a study of 3000+ issues in cloud systems. In
Proceedings of the ACM symposium on cloud computing. 1–14.

[13] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono,
Anang D Satria, Jeffry Adityatama, and Kurnia J Eliazar. 2016. Why
does the cloud stop computing? lessons from hundreds of service
outages. In Proceedings of the Seventh ACM Symposium on Cloud Com-
puting. 1–16.

[14] Jian Huang, Xuechen Zhang, and Karsten Schwan. 2015. Understand-
ing issue correlations: a case study of the hadoop system. In Proceedings
of the Sixth ACM Symposium on Cloud Computing. 2–15.

[15] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong Zhou, and
Yingnong Dang. 2018. Capturing and Enhancing In Situ System Ob-
servability for Failure Detection. In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’18). USENIX Associa-
tion, Carlsbad, CA, 1–16. https://www.usenix.org/conference/osdi18/
presentation/huang

[16] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang,
Hongyu Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020.
How to mitigate the incident? an effective troubleshooting guide rec-
ommendation technique for online service systems. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering.
1410–1420.

[17] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and
Haryadi S Gunawi. 2016. TaxDC: A taxonomy of non-deterministic
concurrency bugs in datacenter distributed systems. In Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems. 517–530.

[18] Tanakorn Leesatapornwongsa, Cesar A Stuardo, Riza O Suminto, Huan
Ke, Jeffrey F Lukman, and Haryadi S Gunawi. 2017. Scalability bugs:
When 100-node testing is not enough. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems. 24–29.

[19] Liqun Li, Xu Zhang, Xin Zhao, Hongyu Zhang, Yu Kang, Pu Zhao,
Bo Qiao, Shilin He, Pochian Lee, Jeffrey Sun, et al. 2021. Fighting the
fog of war: Automated incident detection for cloud systems. In 2021
USENIX Annual Technical Conference (USENIX ATC 21). 131–146.

[20] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj
Singh, Xinsheng Yang, Qingwei Lin, YoujiangWu, Sebastien Levy, et al.
2020. Gandalf: An Intelligent,{End-To-End} Analytics Service for Safe
Deployment in {Large-Scale} Cloud Infrastructure. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20). 389–402.

[21] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019.
What bugs cause production cloud incidents?. In Proceedings of the
Workshop on Hot Topics in Operating Systems. 155–162.

[22] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, de-
tecting and localizing partial failures in large system software. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). 559–574.

[23] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei
Zhang, and ZheWang. 2014. Correlating events with time series for in-
cident diagnosis. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 1583–1592.

[24] Vinod Nair, Ameya Raul, Shwetabh Khanduja, Vikas Bahirwani, Qi-
hong Shao, Sundararajan Sellamanickam, Sathiya Keerthi, Steve Her-
bert, and Sudheer Dhulipalla. 2015. Learning a hierarchical monitoring
system for detecting and diagnosing service issues. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 2029–2038.

[25] David Oppenheimer, Archana Ganapathi, and David A Patterson. 2003.
Why do Internet services fail, and what can be done about it?. In 4th
Usenix Symposium on Internet Technologies and Systems (USITS 03).

[26] Karl Pearson. 1900. X. On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have arisen from random
sampling. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 50, 302 (1900), 157–175.

[27] Amrita Saha and Steven CH Hoi. 2022. Mining Root Cause Knowledge
from Cloud Service Incident Investigations for AIOps. arXiv preprint
arXiv:2204.11598 (2022).

140

https://www.usenix.org/conference/osdi18/presentation/huang
https://www.usenix.org/conference/osdi18/presentation/huang


SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

[28] Manish Shetty, Chetan Bansal, Sumit Kumar, Nikitha Rao, Nachiappan
Nagappan, and Thomas Zimmermann. 2021. Neural knowledge extrac-
tion from cloud service incidents. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 218–227.

[29] Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun Rad-
hakrishna, and Anurag Gupta. 2022. AutoTSG: Learning and Synthesis
for Incident Troubleshooting. arXiv preprint arXiv:2205.13457 (2022).

[30] Anselm Strauss and Juliet M Corbin. 1997. Grounded theory in practice.
Sage.

[31] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi
Legunsen, and Tianyin Xu. 2020. Testing configuration changes in
context to prevent production failures. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 735–751.

[32] Tianyin Xu and Owolabi Legunsen. 2019. Configuration Testing: Test-
ing Configuration Values as Code and with Code. arXiv preprint
arXiv:1905.12195 (2019).

[33] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do not

blame users for misconfigurations. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. 244–259.

[34] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U Jain, andMichael Stumm. 2014. Simple Testing
Can Prevent Most Critical Failures: An Analysis of Production Failures
in Distributed {Data-Intensive} Systems. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). 249–265.

[35] Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei
Dong, and Tianyin Xu. 2021. An evolutionary study of configuration
design and implementation in cloud systems. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 188–200.

[36] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues,
Shan Lu, and Ding Yuan. 2021. Understanding and detecting software
upgrade failures in distributed systems. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 116–131.

[37] Feng Zhu, Lijie Xu, GangMa, Shuping Ji, JieWang, GangWang, Hongyi
Zhang, Kun Wan, Mingming Wang, Xingchao Zhang, et al. 2022. An
Empirical Study on Quality Issues of eBay’s Big Data SQL Analytics
Platform. (2022).

141


	Abstract
	1 Introduction
	2 Methodology
	2.1 Incident Selection in Our Study
	2.2 Categorization Strategy
	2.3 Threats to Validity

	3 What Causes Incidents and How Were They Mitigated?
	3.1 What are the Root Causes?
	3.2 What are the Mitigation Steps?

	4 What Causes Delay in Response?
	4.1 Response Time Analysis
	4.2 Reasons for Delay in Detection
	4.3 Reasons for Delay in Mitigation

	5 Lessons learnt for resiliency
	5.1 Automation Opportunities for Future
	5.2 Discussion on Lessons Learnt for Future

	6 Multi-dimensional Incident Analysis
	7 Related Work
	8 Conclusion
	References

